skip to main content

Microgrid Hybrid Solar/Wind/Diesel and Battery Energy Storage Power Generation System: Application to Koh Samui, Southern Thailand

1Faculty of Industrial Technology Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat, Thailand

2Division of Physics, Faculty of Science, Research Center in Energy and Environment, Thaksin University (Phatthalung Campus), Phatthalung, Thailand

3Faculty of Engineering, Thaksin University (Phatthalung Campus) Phatthalung, Thailand

4 School of Accountancy and Finance, Walailak University, Nakhon Si Thammarat, Thailand

5 Université de Moncton, Edmundston, New Brunswick, Canada

View all affiliations
Received: 13 Jul 2022; Revised: 28 Oct 2022; Accepted: 25 Dec 2022; Available online: 5 Jan 2023; Published: 15 Mar 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
This paper presents the optimization of a 10 MW solar/wind/diesel power generation system with a battery energy storage system (BESS) for one feeder of the distribution system in Koh Samui, an island in southern Thailand.  The main objectives are to maximize the deployment of renewable energy-based power generation and to minimize the levelized cost of energy (LCOE).  A hybrid renewable energy-based power generation system, consisting of solar PV, wind turbine generators, diesel generator (DiG), bi-directional grid-tied charging inverter (CONV) and BESS, was simulated using HOMER Pro®. This study accessed the database of the National Aeronautics and Space Administration (NASA) for the Surface meteorology and Solar Energy (SSE) for the global solar radiation and temperature, along with the Modern-Era Retrospective analysis for Research and Applications (MERRA-2) wind database. The simulations show that Scenario 1 (PV/Wind/DiG/BESS/CONV) and Scenario 3 (PV/DiG/BESS/CONV) are the optimal configurations regarding the economic indicators (i.e. minimum net present costs (NPC) of 438 M$ and LCOE of 0.20 $/kWh) and the environmental indicators (i.e. lowest greenhouse gases (GHG) emission avoidances of 6,339 tonnes/year and highest renewable fraction (RF) of 89.4%). Furthermore, the sensitivity analysis illustrates that Scenario 3 offers the optimal system type with the largest annual energy production (AEP). Besides contributing to the body of knowledge of optimization methodologies for microgrid hybrid power systems, the outcome of this work will assist the regional energy practitioners and policy makers regarding optimal configurations of microgrid hybrid systems in the development of a Green Island concept for Koh Samui.
Fulltext View|Download
Keywords: Solar PV; Wind Turbine Generator; Optimization; Levelized Cost of Energy; Renewable Fraction; Battery Energy Storage System
Funding: -

Article Metrics:

  1. Abo-Elyousr, F. K., & Elnozahy, A. J. R. E. (2018). Bi-objective economic feasibility of hybrid micro-grid systems with multiple fuel options for islanded areas in Egypt. Renewable Energy, 128, 37-56. https://doi.org/10.1016/j.renene.2018.05.066
  2. Acuña, L. G., Lake, M., Padilla, R. V., Lim, Y. Y., Ponzón, E. G., & Soo Too, Y. C. (2018). Modelling autonomous hybrid photovoltaic-wind energy systems under a new reliability approach. Energy Conversion and Management, 172, 357-369. doi: https://doi.org/10.1016/j.enconman.2018.07.025
  3. Ahmad, J., Imran, M., Khalid, A., Iqbal, W., Ashraf, S. R., Adnan, M., . . . Khokhar, K. S. (2018). Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar. Energy, 148, 208-234. https://doi.org/10.1016/j.energy.2018.01.133
  4. Akter, H., Howlader, H. O. R., Nakadomari, A., Islam, M. R., Saber, A. Y., & Senjyu, T. (2022). A Short Assessment of Renewable Energy for Optimal Sizing of 100% Renewable Energy Based Microgrids in Remote Islands of Developing Countries: A Case Study in Bangladesh. Energies, 15(3), 1084. https://doi.org/10.3390/en15031084
  5. Al-Ghussain, L., Abubaker, A. M., & Darwish Ahmad, A. (2021a). Superposition of Renewable-Energy Supply from Multiple Sites Maximizes Demand-Matching: Towards 100% Renewable Grids in 2050. Applied Energy, 284, 116402. doi: https://doi.org/10.1016/j.apenergy.2020.116402
  6. Al-Ghussain, L., Ahmad, A. D., Abubaker, A. M., Abujubbeh, M., Almalaq, A., & Mohamed, M. A. (2021b). A Demand-Supply Matching-Based Approach for Mapping Renewable Resources Towards 100% Renewable Grids in 2050. IEEE Access, 9, 58634-58651. https://doi.org/10.1109/ACCESS.2021.3072969
  7. Al-Ghussain, L., Darwish Ahmad, A., Abubaker, A. M., & Mohamed, M. A. (2021c). An integrated photovoltaic/wind/biomass and hybrid energy storage systems towards 100% renewable energy microgrids in university campuses. Sustainable Energy Technologies and Assessments, 46, 101273. doi: https://doi.org/10.1016/j.seta.2021.101273
  8. Amrollahi, M. H., & Bathaee, S. M. T. (2017). Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response. Applied Energy, 202, 66-77. doi: https://doi.org/10.1016/j.apenergy.2017.05.116
  9. Argin, M., Yerci, V., Erdogan, N., Kucuksari, S., & Cali, U. (2019). Exploring the offshore wind energy potential of Turkey based on multi-criteria site selection. Energy Strategy Reviews, 23, 33-46. doi: https://doi.org/10.1016/j.esr.2018.12.005
  10. Arribas, L., Bitenc, N., & Benech, A. (2021). Taking into Consideration the Inclusion of Wind Generation in Hybrid Microgrids: A Methodology and a Case Study. Energies, 14(14), 4082. https://doi.org/10.3390/en14144082
  11. Atallah, M. O., Farahat, M. A., Lotfy, M. E., & Senjyu, T. (2020). Operation of conventional and unconventional energy sources to drive a reverse osmosis desalination plant in Sinai Peninsula, Egypt. Renewable Energy, 145, 141-152. doi: https://doi.org/10.1016/j.renene.2019.05.138
  12. Babaei, R., Ting, D. S. K., & Carriveau, R. (2022). Feasibility and optimal sizing analysis of stand-alone hybrid energy systems coupled with various battery technologies: A case study of Pelee Island. Energy Reports, 8, 4747-4762. doi: https://doi.org/10.1016/j.egyr.2022.03.133
  13. Bagheri, M., Delbari, S. H., Pakzadmanesh, M., & Kennedy, C. A. (2019). City-integrated renewable energy design for low-carbon and climate-resilient communities. Applied Energy, 239, 1212-1225. doi: https://doi.org/10.1016/j.apenergy.2019.02.031
  14. Bloomberg, & SEforALL, a. (2020). State of the Global Mini-grids Market Report 2020. Available online: https://www.seforall.org/system/files/2020-06/MGP-2020-SEforALL.pdf (Accessed on 3 July 2021)
  15. Bouchekara, H. R. E.-H., Javaid, M. S., Shaaban, Y. A., Shahriar, M. S., Ramli, M. A. M., & Latreche, Y. (2021). Decomposition based multiobjective evolutionary algorithm for PV/Wind/Diesel Hybrid Microgrid System design considering load uncertainty. Energy Reports, 7, 52-69. doi: https://doi.org/10.1016/j.egyr.2020.11.102
  16. Bukar, A. L., Tan, C. W., & Lau, K. Y. (2019). Optimal sizing of an autonomous photovoltaic/wind/battery/diesel generator microgrid using grasshopper optimization algorithm. Solar Energy, 188, 685-696. doi: https://doi.org/10.1016/j.solener.2019.06.050
  17. Bundschuh, J., Kaczmarczyk, M., Ghaffour, N., & Tomaszewska, B. (2021). State-of-the-art of renewable energy sources used in water desalination: Present and future prospects. Desalination, 508, 115035. doi: https://doi.org/10.1016/j.desal.2021.115035
  18. Chaichan, W., Waewsak, J., & Gagnon, Y. (2021). A systematic decision-making approach for the assessment of hybrid renewable energy applications with techno-economic optimization: Application to the Rajamangala University of Technology Srivijaya (Trang Campus), Southern Thailand. Songklanakarin Journal of Science and Technology (SJST), 43, 1800-1806. https://doi.org/10.14456/sjst-psu.2021.236
  19. Dahiru, A. T., & Tan, C. W. (2020). Optimal sizing and techno-economic analysis of grid-connected nanogrid for tropical climates of the Savannah. Sustainable Cities and Society, 52, 101824. doi: https://doi.org/10.1016/j.scs.2019.101824
  20. Das, B. K., Tushar, M. S. H. K., & Zaman, F. (2021). Techno-economic feasibility and size optimisation of an off-grid hybrid system for supplying electricity and thermal loads. Energy, 215, 119141. doi: https://doi.org/10.1016/j.energy.2020.119141
  21. Das, H. S., Tan, C. W., Yatim, A. H. M., & Lau, K. Y. (2017). Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia. Renewable and Sustainable Energy Reviews, 76, 1332-1347. doi: https://doi.org/10.1016/j.rser.2017.01.174
  22. Duman, A. C., & Güler, Ö. (2018). Techno-economic analysis of off-grid PV/wind/fuel cell hybrid system combinations with a comparison of regularly and seasonally occupied households. Sustainable Cities and Society, 42, 107-126. https://doi.org/10.1016/j.scs.2018.06.029
  23. Elkadeem, M. R., Wang, S., Azmy, A. M., Atiya, E. G., Ullah, Z., & Sharshir, S. W. (2020). A systematic decision-making approach for planning and assessment of hybrid renewable energy-based microgrid with techno-economic optimization: A case study on an urban community in Egypt. Sustainable Cities and Society, 54, 102013. https://doi.org/10.1016/j.scs.2019.102013
  24. Elkadeem, M. R., Wang, S., Sharshir, S. W., & Atia, E. G. (2019). Feasibility analysis and techno-economic design of grid-isolated hybrid renewable energy system for electrification of agriculture and irrigation area: A case study in Dongola, Sudan. Energy Conversion and Management, 196, 1453-1478. https://doi.org/10.1016/j.enconman.2019.06.085
  25. Eltamaly, A. M., & Mohamed, M. A. (2014). A Novel Design and Optimization Software for Autonomous PV/Wind/Battery Hybrid Power Systems. Mathematical Problems in Engineering, 2014, 637174. https://doi.org/10.1155/2014/637174
  26. Eltamaly, A. M., Mohamed, M. A., & Alolah, A. I. (2016). A novel smart grid theory for optimal sizing of hybrid renewable energy systems. Solar Energy, 124, 26-38. https://doi.org/10.1016/j.solener.2015.11.016
  27. Farret, F. A., & Simões, M. G. (2006). Integration of alternative sources of energy (Vol. 504): Wiley Online Library. https://doi.org/10.1002/0471755621
  28. Haffaf, A., Lakdja, F., Meziane, R., & Abdeslam, D. O. (2021). Study of economic and sustainable energy supply for water irrigation system (WIS). Sustainable Energy, Grids and Networks, 25, 100412. doi: https://doi.org/10.1016/j.segan.2020.100412
  29. Harish, V. S. K. V., Anwer, N., & Kumar, A. (2022). Applications, planning and socio-techno-economic analysis of distributed energy systems for rural electrification in India and other countries: A review. Sustainable Energy Technologies and Assessments, 52, 102032. doi: https://doi.org/10.1016/j.seta.2022.102032
  30. He, W., Tao, L., Han, L., Sun, Y., Campana, P. E., & Yan, J. (2021). Optimal analysis of a hybrid renewable power system for a remote island. Renewable Energy, 179, 96-104. doi: https://doi.org/10.1016/j.renene.2021.07.034
  31. HOMER Pro. (2021). Available online: https://www.homerenergy.com (Accessed on 5 October 2021)
  32. Islam, M. S., Das, B. K., Das, P., & Rahaman, M. H. (2021). Techno-economic optimization of a zero emission energy system for a coastal community in Newfoundland, Canada. Energy, 220, 119709. https://doi.org/10.1016/j.energy.2020.119709
  33. Jahangir, M. H., Cheraghi, R. (2020). Economic and environmental assessment of solar-wind-biomass hybrid renewable energy system supplying rural settlement load. Sustainable Energy Technologies and Assessments 42, 100895. https://doi.org/10.1016/j.seta.2020.100895
  34. Kamdar, I., Ali, S., Taweekun, J., & Ali, H. M. (2021). Wind Farm Site Selection Using WAsP Tool for Application in the Tropical Region. Sustainability, 13(24), 13718. https://doi.org/10.3390/su132413718
  35. Kamdar, I., & Taweekun, J. (2022). A Comparative Study of Wind Characteristics Between South-Western and South-Eastern Thailand Using Different Wind Turbine Models. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 92(1), 149-161. https://doi.org/10.37934/arfmts.92.1.149161
  36. Katsivelakis, M., Bargiotas, D., Daskalopulu, A., Panapakidis, I. P., & Tsoukalas, L. (2021). Techno-Economic Analysis of a Stand-Alone Hybrid System: Application in Donoussa Island, Greece. Energies, 14(7). https://doi.org/10.3390/en14071868
  37. Kavadias, K. A., & Triantafyllou, P. (2021). Hybrid Renewable Energy Systems' Optimisation. A Review and Extended Comparison of the Most-Used Software Tools. Energies, 14(24), 8268. https://doi.org/10.3390/en14248268
  38. Ketjoy, N., Chamsa-ard, W., & Mensin, P. (2021). Analysis of factors affecting efficiency of inverters: Case study grid-connected PV systems in lower northern region of Thailand. Energy Reports, 7, 3857-3868. doi: https://doi.org/10.1016/j.egyr.2021.06.075
  39. Khamharnphol, R., Kamdar, I., Waewsak, J., Chiwamongkhonkarn, S., Khunpetcha, S., Kongruang, C., & Gagnon, Y. (2023). Techno-Economic Assessment of a 100 kWp Solar Rooftop PV System for Five Hospitals in Central Southern Thailand. International Journal of Renewable Energy Development, 12(1), 77-86. https://doi.org/10.14710/ijred.2023.46864
  40. Kim, M.-H., Kim, D.-W., & Lee, D.-W. (2021). Feasibility of Low Carbon Renewable Energy City Integrated with Hybrid Renewable Energy Systems. Energies, 14(21), 7342. https://doi.org/10.3390/en14217342
  41. Kohsri, S., Meechai, A., Prapainainar, C., Narataruksa, P., Hunpinyo, P., & Sin, G. (2018). Design and preliminary operation of a hybrid syngas/solar PV/battery power system for off-grid applications: A case study in Thailand. Chemical Engineering Research and Design, 131, 346-361. https://doi.org/10.1016/j.cherd.2018.01.003
  42. Li, J., Liu, P., & Li, Z. (2020). Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China. Energy, 208, 118387. doi: https://doi.org/10.1016/j.energy.2020.118387
  43. Li, J., Liu, Y., & Wu, L. (2018). Optimal Operation for Community-Based Multi-Party Microgrid in Grid-Connected and Islanded Modes. IEEE Transactions on Smart Grid, 9(2), 756-765. https://doi.org/0.1109/TSG.2016.2564645
  44. Lian, J., Zhang, Y., Ma, C., Yang, Y., & Chaima, E. (2019). A review on recent sizing methodologies of hybrid renewable energy systems. Energy Conversion and Management, 199, 112027. doi: https://doi.org/10.1016/j.enconman.2019.112027
  45. Lukuyu, J. M., Blanchard, R. E., & Rowley, P. N. (2019). A risk-adjusted techno-economic analysis for renewable-based milk cooling in remote dairy farming communities in East Africa. Renewable Energy, 130, 700-713. https://doi.org/10.1016/j.renene.2018.06.101
  46. Padrón, I., Avila, D., Marichal, G. N., & Rodríguez, J. A. (2019). Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago. Renewable and Sustainable Energy Reviews, 101, 221-230. https://doi.org/10.1016/j.rser.2018.11.009
  47. Pascasio, J. D. A., Esparcia, E. A., Castro, M. T., & Ocon, J. D. (2021). Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands. Renewable Energy, 179, 1589-1607. https://doi.org/10.1016/j.renene.2021.07.093
  48. Pears, A., Ojimi, T., Kuishan, L., Brander, W., Lam, A., Komori, G., & Bragatheswaran, G. (2013). Policy Review for Low-Carbon Town Development Project in Koh Samui Thailand Final Report. Asia Pacific Energy Research Centre; Japan. Available online: https://aperc.or.jp/publications/reports/lcmt/Policy_Review_for_Koh_Samui_Thailand.pdf (Accessed on 28 May 2022)
  49. Qi, X., Wang, J., Królczyk, G., Gardoni, P., & Li, Z. (2022). Sustainability analysis of a hybrid renewable power system with battery storage for islands application. Journal of Energy Storage, 50, 104682. doi: https://doi.org/10.1016/j.est.2022.104682
  50. Ranthodsang, M., Waewsak, J., Kongruang, C., & Gagnon, Y. (2020). Offshore wind power assessment on the western coast of Thailand. Energy Reports, 6, 1135-1146. https://doi.org/10.1016/j.egyr.2020.04.036
  51. Rey, A. L., Santiago, R. V. M., & Pacis, M. C. (2017). Modeling of a hybrid renewable power system for Calayan Island, Cagayan using the HOMER software. Paper presented at the 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). https://doi.org/10.1109/HNICEM.2017.8269479
  52. Rezk, H., Abdelkareem, M. A., & Ghenai, C. (2019). Performance evaluation and optimal design of stand-alone solar PV-battery system for irrigation in isolated regions: A case study in Al Minya (Egypt). Sustainable Energy Technologies and Assessments, 36, 100556. https://doi.org/10.1016/j.seta.2019.100556
  53. Sen, R., & Bhattacharyya, S. C. (2014). Off-grid electricity generation with renewable energy technologies in India: An application of HOMER. Renewable Energy, 62, 388-398. https://doi.org/10.1016/j.renene.2013.07.028
  54. Sirasoontorn, P., & Koomsup, P. (2017). Energy Transition in Thailand: Challenges and Opportunities. Available online: https://library.fes.de/pdf-files/bueros/thailand/13888.pdf (Accessed on 4 June 2022)
  55. Sood, K., & Muthusamy, E. J. M. P. L. B. (2020). A comprehensive review on hybrid renewable energy systems. Modern Physics Letters B, 34(27), 2050290. https://doi.org/10.1142/S0217984920502905
  56. Teo, Y. L., & Go, Y. I. (2021). Techno-economic-environmental analysis of solar/hybrid/storage for vertical farming system: A case study, Malaysia. Renewable Energy Focus, 37, 50-67. doi: https://doi.org/10.1016/j.ref.2021.02.005
  57. Tongsopit, S., Junlakarn, S., Wibulpolprasert, W., Chaianong, A., Kokchang, P., & Hoang, N. V. (2019). The economics of solar PV self-consumption in Thailand. Renewable Energy, 138, 395-408. https://doi.org/10.1016/j.renene.2019.01.087
  58. Tsai, C.-T., Beza, T. M., Wu, W.-B., & Kuo, C.-C. J. E. (2019). Optimal configuration with capacity analysis of a hybrid renewable energy and storage system for an island application. Energies, 13(1), 8. https://doi.org/10.3390/en13010008
  59. Uwineza, L., Kim, H.-G., & Kim, C. K. (2021). Feasibility study of integrating the renewable energy system in Popova Island using the Monte Carlo model and HOMER. Energy Strategy Reviews, 33, 100607. https://doi.org/10.1016/j.esr.2020.100607
  60. Vendoti, S., Muralidhar, M., & Kiranmayi, R. (2021). Techno-economic analysis of off-grid solar/wind/biogas/biomass/fuel cell/battery system for electrification in a cluster of villages by HOMER software. Development, & Sustainability, 23(1), 351-372. https://doi.org/10.1007/s10668-019-00583-2
  61. Vides-Prado, A., Camargo, E. O., Vides-Prado, C., Orozco, I. H., Chenlo, F., Candelo, J. E., & Sarmiento, A. B. (2018). Techno-economic feasibility analysis of photovoltaic systems in remote areas for indigenous communities in the Colombian Guajira. Renewable and Sustainable Energy Reviews, 82, 4245-4255. https://doi.org/10.1016/j.rser.2017.05.101
  62. Waewsak, J., Ali, S., & Gagnon, Y. (2020). Site suitability assessment of para rubberwood-based power plant in the southernmost provinces of Thailand based on a multi-criteria decision-making analysis. Biomass and Bioenergy, 137, 105545. https://doi.org/10.1016/j.biombioe.2020.105545
  63. Waewsak, J., Ali, S., Natee, W., Kongruang, C., Chancham, C., & Gagnon, Y. (2020). Assessment of hybrid, firm renewable energy-based power plants: Application in the southernmost region of Thailand. Renewable and Sustainable Energy Reviews, 130, 109953. https://doi.org/10.1016/j.rser.2020.109953
  64. Waewsak, J., Chancham, C., Chiwamongkhonkarn, S., & Gagnon, Y. (2019). Wind Resource Assessment of the Southernmost Region of Thailand Using Atmospheric and Computational Fluid Dynamics Wind Flow Modeling. Energies, 12(10). https://doi.org/10.3390/en12101899
  65. Waewsak, J., Chancham, C., Mani, M., & Gagnon, Y. (2014). Estimation of Monthly Mean Daily Global Solar Radiation over Bangkok, Thailand Using Artificial Neural Networks. Energy Procedia, 57, 1160-1168. https://doi.org/10.1016/j.egypro.2014.10.103
  66. Werapun, W., Tirawanichakul, Y., & Waewsak, J. (2017). Wind Shear Coefficients and their Effect on Energy Production. Energy Procedia, 138, 1061-1066. doi: https://doi.org/10.1016/j.egypro.2017.10.111
  67. Xing, L.-N., Xu, H.-L., Sani, A. K., Hossain, M. A., & Muyeen, S. M. (2021). Techno-Economic and Environmental Assessment of the Hybrid Energy System Considering Electric and Thermal Loads. Electronics, 10(24). https://doi.org/10.3390/electronics10243136
  68. Yang, H., Wei, Z., & Chengzhi, L. (2009). Optimal design and techno-economic analysis of a hybrid solar–wind power generation system. Applied Energy, 86(2), 163-169. https://doi.org/10.1016/j.apenergy.2008.03.008

Last update:

  1. A systematic decision-making approach to optimizing microgrid energy sources in rural areas through diesel generator operation and techno-economic analysis: A case study of Baron Technopark in Indonesia

    Adinda Prawitasari, Vetri Nurliyanti, Dannya Maharani Putri Utami, Eka Nurdiana, Kholid Akhmad, Prasetyo Aji, Suhraeni Syafei, Ifanda Ifanda, Iwa Garniwa Mulyana. International Journal of Renewable Energy Development, 13 (2), 2024. doi: 10.61435/ijred.2024.59560
  2. The application of equilibrium optimizer for solving modern economic load dispatch problem considering renewable energies and multiple-fuel thermal units

    Hung Duc Nguyen, Khoa Hoang Truong, Nhuan An Le. International Journal of Renewable Energy Development, 12 (3), 2023. doi: 10.14710/ijred.2023.52835

Last update: 2024-04-26 06:15:20

No citation recorded.