skip to main content

QPVA-Based Electrospun Anion Exchange Membrane for Fuel Cells

1Institute of Chemical Engineering and Environmental Technology (CEET), Graz University of Technology, Austria

2Department of Chemical Engineering, Diponegoro University, Indonesia

Received: 30 Oct 2022; Revised: 2 Jan 2023; Accepted: 29 Jan 2023; Available online: 11 Feb 2023; Published: 15 Mar 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The anion exchange membrane is one of the core components that play a crucial and inseparable role in alkaline anion exchange membrane fuel cells. Anion exchange membranes (AEMs) were prepared from quaternary ammonium poly(vinyl alcohol) (QPVA) by an electrospinning method. QPVA was used both as material for electrospun fiber mats and as filler for the inter-fiber void matrix. The objective of this work is to investigate the influence of the inter-fibers void matrix filler concentration on the properties and performance of eQPVA-x AEMs. FTIR spectra were used to identify the chemical structures of the AEMs. The primary functional groups of PVA and quaternary ammonium-based ion conducting cation were detected. The surface morphology of QPVA nanofiber mats and eQPVA-x AEMs was observed using SEM. Electrospun nanofiber structures of QPVA with an average size of 100.96 nm were observed in SEM pictures. The ion exchange capacity, swelling properties, water uptake, and OH-ions conductivity were determined to evaluate the performance of eQPVA-x AEMs.  By incorporating the QPVA matrix of 5 wt.% concentration, the eQPVA-5.0 AEMs attained the highest ion exchange capacity, water uptake, swelling properties, and OH conductivity of 0.82 mmol g−1, 25.5%, 19.9%, and 2.26 m×s cm−1, respectively. Electrospun QPVA AEMs have the potential to accelerate the development of alkaline anion exchange membrane fuel cells.

Fulltext View|Download
Keywords: Anion exchange membranes; fuel cells; QPVA; electrospinning

Article Metrics:

  1. Aslam, M., Kalyar, M. A., & Raza, Z. A. (2018). Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polymer Engineering and Science, 58(12), 2119–2132. https://doi.org/10.1002/pen.24855
  2. Ayaz, S., Yao, Z. Y., Chen, Y. J., & Yu, H. Y. (2022). Preparation of poly(arylene ether ketone) based anion exchange membrane with pendant pyrimidinium and pyridazinium cation derivatives for alkaline fuel cell. Journal of Membrane Science, 659(June), 120778. https://doi.org/10.1016/j.memsci.2022.120778
  3. Becerra-Arciniegas, R. A., Narducci, R., Ercolani, G., Antonaroli, S., Sgreccia, E., Pasquini, L., Knauth, P., & Di Vona, M. L. (2019). Alkaline stability of model anion exchange membranes based on poly(phenylene oxide) (PPO) with grafted quaternary ammonium groups: Influence of the functionalization route. Polymer, 185, 121931. https://doi.org/10.1016/j.polymer.2019.121931
  4. Cermenek, B., Ranninger, J., & Hacker, V. (2018). Alkaline direct ethanol fuel cell. In Ethanol: Science and Engineering (pp. 383–405). Elsevier. https://doi.org/10.1016/B978-0-12-811458-2.00015-8
  5. Das, G., Choi, J.-H., Nguyen, P. K. T., Kim, D.-J., & Yoon, Y. S. (2022). Anion Exchange Membranes for Fuel Cell Application: A Review. Polymers, 14(6), 1197. https://doi.org/10.3390/polym14061197
  6. Ding, C., & Qiao, Z. (2022). A review of the application of polyvinyl alcohol membranes for fuel cells. Ionics, 28(1), 1–13. https://doi.org/10.1007/s11581-021-04338-w
  7. Du, S., Li, S., Xie, N., Xu, Y., Weng, Q., Ning, X., Chen, P., Chen, X., & An, Z. (2022). Development of rigid side-chain poly(ether sulfone)s based anion exchange membrane with multiple annular quaternary ammonium ion groups for fuel cells. Polymer, 251(April), 124919. https://doi.org/10.1016/j.polymer.2022.124919
  8. Du, X., Zhang, H., Yuan, Y., & Wang, Z. (2020). Semi-interpenetrating network anion exchange membranes based on quaternized polyvinyl alcohol/poly(diallyldimethylammonium chloride). Green Energy and Environment. 6(5), 743-750 https://doi.org/10.1016/j.gee.2020.06.015
  9. Elumalai, V., Ganesh, T., Selvakumar, C., & Sangeetha, D. (2018). Phosphonate Ionic Liquid Immobilised SBA-15/SPEEK Composite Membranes for High Temperature Proton Exchange Membrane Fuel Cells. Materials Science for Energy Technologies. https://doi.org/10.1016/j.mset.2018.08.003
  10. Feketefoldi, B., & Cermenek, B. (2016). Chitosan-Based Anion Exchange Membranes for Direct Ethanol Fuel Cells. Journal of Membrane Science & Technology, 06(01), 1–9. https://doi.org/10.4172/2155-9589.1000145
  11. Fennessey, S. F., & Farris, R. J. (2004). Fabrication of aligned and molecularly oriented electrospun polyacrylonitrile nanofibers and the mechanical behavior of their twisted yarns. Polymer, 45, 4217–4225. https://doi.org/10.1016/j.polymer.2004.04.001
  12. Francia, C., Ijeri, V. S., Specchia, S., & Spinelli, P. (2011). Estimation of hydrogen crossover through Nafion® membranes in PEMFCs. Journal of Power Sources, 196(4), 1833–1839. https://doi.org/10.1016/j.jpowsour.2010.09.058
  13. Gong, Y., Liao, X., Xu, J., Chen, D., & Zhang, H. (2016). Novel anion-conducting interpenetrating polymer network of quaternized polysulfone and poly(vinyl alcohol) for alkaline fuel cells. International Journal of Hydrogen Energy, 41(13), 5816–5823. https://doi.org/10.1016/j.ijhydene.2016.02.037
  14. Guo, M., Ban, T., Wang, Y., Wang, Y., Zhang, Y., Zhang, J., & Zhu, X. (2022). Exploring highly soluble ether-free polybenzimidazole as anion exchange membranes with long term durability. Journal of Membrane Science, 647(January), 120299. https://doi.org/10.1016/j.memsci.2022.120299
  15. Hagesteijn, K. F. L., Jiang, S., & Ladewig, B. P. (2018). A review of the synthesis and characterization of anion exchange membranes. Journal of Materials Science. 53, 11131–11150; https://doi.org/10.1007/s10853-018-2409-y
  16. Huang, J., Yu, Z., Tang, J., Wang, P., Tan, Q., Wang, J., & Lei, X. (2022). A review on anion exchange membranes for fuel cells: Anion-exchange polyelectrolytes and synthesis strategies. International Journal of Hydrogen Energy, 47(65), 27800–27820. https://doi.org/10.1016/j.ijhydene.2022.06.140
  17. Huang, T., Qiu, X., Zhang, J., Li, X., Pei, Y., Jiang, H., Yue, R., Yin, Y., Jiang, Z., Zhang, X., & Guiver, M. D. (2022). Hydrogen crossover through microporous anion exchange membranes for fuel cells. Journal of Power Sources, 527, 231143. https://doi.org/10.1016/j.jpowsour.2022.231143
  18. Inaba, M., Kinumoto, T., Kiriake, M., Umebayashi, R., Tasaka, A., & Ogumi, Z. (2006). Gas crossover and membrane degradation in polymer electrolyte fuel cells. Electrochimica Acta, 51(26), 5746–5753. https://doi.org/10.1016/j.electacta.2006.03.008
  19. Iravaninia, M., & Rowshanzamir, S. (2015). Polysulfone-based Anion Exchange Membranes for Potential Application in Solid Alkaline Fuel Cells. Journal of Renewable Energy and Environment, 2(2), 59–65. https://doi.org/10.30501/jree.2015.70071
  20. Kang, W., & Cannon, J. L. (2015). A membrane-based electro-separation method (MBES) for sample clean-up and norovirus concentration. PLoS ONE, 10(10), 1–22. https://doi.org/10.1371/journal.pone.0141484
  21. Kumar, P., Bharti, R. P., Kumar, V., & Kundu, P. P. (2018). Polymer electrolyte membranes for microbial fuel cells: Part a. nafion-based membranes. In Progress and Recent Trends in Microbial Fuel Cells (pp. 47–72). Elsevier B.V. https://doi.org/10.1016/B978-0-444-64017-8.00004-X
  22. Li, Y., Li, M., Zhou, S., Xue, A., Zhang, Y., Zhao, Y., Zhong, J., Zhang, Q., & Yang, D. (2020). Enhancement of hydroxide conductivity by incorporating nanofiber-like palygorskite into quaternized polysulfone as anion exchange membranes. Applied Clay Science, 195(June), 105702. https://doi.org/10.1016/j.clay.2020.105702
  23. Mayadevi, T. S., Min, K., Choi, O., Chae, J. E., Kim, H. J., Choi, C. H., Kang, H., Park, C. H., & Kim, T. H. (2022). PPOs having piperidinium-based conducting head groups with extra molecular interaction sites as new anion exchange membranes. International Journal of Hydrogen Energy, 47(36), 16222–16234. https://doi.org/10.1016/j.ijhydene.2022.03.110
  24. Movil, O., Frank, L., & Staser, J. A. (2015). Graphene Oxide-Polymer Nanocomposite Anion-Exchange Membranes. Journal of the Electrochemical Society, 162(4), F419–F426. https://doi.org/10.1149/2.0681504jes
  25. O’Hayre, R. P. (2017). Fuel cells for electrochemical energy conversion. EPJ Web of Conferences, 148, 1–16. https://doi.org/10.1051/epjconf/201714800013
  26. Patel, A., Patra, F., Shah, N., & Khedkar, C. (2018). Application of Nanotechnology in the Food Industry: Present Status and Future Prospects. In Impact of Nanoscience in the Food Industry (pp. 1–27). Elsevier Inc. https://doi.org/10.1016/B978-0-12-811441-4.00001-7
  27. Ramaswamy, N., & Mukerjee, S. (2020). Alkaline Anion-Exchange Membrane Fuel Cells : Challenges in Electrocatalysis and Interfacial Charge Transfer. Chem. Rev., 119, 11945–11979. https://doi.org/10.1021/acs.chemrev.9b00157
  28. Samsudin, A. M., Bodner, M., & Hacker, V. (2022). A Brief Review of Poly ( Vinyl Alcohol ) -Based Anion Exchange Membranes for Alkaline Fuel Cells. Polymer, 14, 3565. https://doi.org/10.3390/polym14173565
  29. Samsudin, A. M., & Hacker, V. (2019). Preparation and characterization of PVA/PDDA/nano-zirconia composite anion exchange membranes for fuel cells. Polymers, 11, 1399. https://doi.org/10.3390/polym11091399
  30. Samsudin, A. M., & Hacker, V. (2021). Effect of Crosslinking on the Properties of QPVA/PDDA Anion Exchange Membranes for Fuel Cells Application. Journal of The Electrochemical Society, 168, 044526. https://doi.org/10.1149/1945-7111/abf781
  31. Samsudin, A. M., Roschger, M., Wolf, S., & Hacker, V. (2022). Preparation and Characterization of QPVA/PDDA Electrospun Nanofiber Anion Exchange Membranes for Alkaline Fuel Cells. Nanomaterials, 12(22), 3965. https://doi.org/10.3390/nano12223965
  32. Samsudin, A. M., Wolf, S., Roschger, M., & Hacker, V. (2021). Poly(vinyl alcohol)-based Anion Exchange Membranes for Alkaline Polymer Electrolyte Fuel Cells. International Journal of Renewable Energy Development, 10(3), 435–443. https://doi.org/10.14710/ijred.2021.33168
  33. Sood, R., Cavaliere, S., Jones, D. J., & Rozière, J. (2016). Electrospun nanofibre composite polymer electrolyte fuel cell and electrolysis membranes. Nano Energy, 26, 729–745. https://doi.org/10.1016/j.nanoen.2016.06.027
  34. Susanto, H., Samsudin, A. M., Faz, M. W., & Rani, M. P. H. (2016). Impact of post-treatment on the characteristics of electrospun poly (vinyl alcohol)/chitosan nanofibers. In H. Susanto, R. Suryana, & K. Triyana (Eds.), AIP Conference Proceedings (Vol. 1725, p. 020087). AIP Publishing LLC. https://doi.org/10.1063/1.4945541
  35. Tamura, T., & Kawakami, H. (2010). Aligned Electrospun Nanofiber Composite Membranes for Fuel Cell Electrolytes. Nano Letters, 10, 1324–1328. https://doi.org/10.1021/nl1007079
  36. Tomasino, E., Mukherjee, B., Ataollahi, N., & Scardi, P. (2022). Water Uptake in an Anion Exchange Membrane Based on Polyamine: A First-Principles Study. The Journal of Physical Chemistry B, 126(38), 7418–7428. https://doi.org/10.1021/acs.jpcb.2c04115
  37. Vandiver, M. A., Caire, B. R., Carver, J. R., Waldrop, K., Hibbs, M. R., Varcoe, J. R., Herring, A. M., & Liberatore, M. W. (2014). Mechanical Characterization of Anion Exchange Membranes by Extensional Rheology under Controlled Hydration. Journal of The Electrochemical Society, 161(10), H677–H683. https://doi.org/10.1149/2.0971410jes
  38. Wang, Y.-J., Qiao, J., Baker, R., & Zhang, J. (2013). Alkaline polymer electrolyte membranes for fuel cell applications. Chemical Society Reviews, 42(13), 5768–5787. https://doi.org/10.1039/c3cs60053j
  39. Wang, Z., Zhou, S. F., Zhuo, Y. Z., Lai, A. N., Lu, Y. Z., & Wu, X. Bin. (2022). Adamantane-based block poly(arylene ether sulfone)s as anion exchange membranes. Polymer, 255(July), 125155. https://doi.org/10.1016/j.polymer.2022.125155
  40. Yang, J. M., Fan, C. S., Wang, N. C., & Chang, Y. H. (2018). Evaluation of membrane preparation method on the performance of alkaline polymer electrolyte: Comparison between poly(vinyl alcohol)/chitosan blended membrane and poly(vinyl alcohol)/chitosan electrospun nanofiber composite membranes. Electrochimica Acta, 266, 332–340. https://doi.org/10.1016/j.electacta.2018.02.043
  41. Zelovich, T., Vogt-Maranto, L., Hickner, M. A., Paddison, S. J., Bae, C., Dekel, D. R., & Tuckerman, M. E. (2019). Hydroxide Ion Diffusion in Anion-Exchange Membranes at Low Hydration: Insights from Ab Initio Molecular Dynamics. Chemistry of Materials, 31(15), 5778–5787. https://doi.org/10.1021/acs.chemmater.9b01824
  42. Zhang, G., Li, R., Wang, X., Chen, X., Shen, Y., & Fu, Y. (2022). The inhibiting water uptake mechanism of main-chain type N-spirocyclic quaternary ammonium ionene blended with polybenzimidazole as anion exchange membrane. Separation and Purification Technology, 291(January), 120950. https://doi.org/10.1016/j.seppur.2022.120950
  43. Zhang, J., Qiao, J., Jiang, G., Liu, L., & Liu, Y. (2013). Cross-linked poly(vinyl alcohol)/poly (diallyldimethylammonium chloride) as anion-exchange membrane for fuel cell applications. Journal of Power Sources, 240, 359–367. https://doi.org/10.1016/j.jpowsour.2013.03.162
  44. Zheng, Y., Ash, U., Pandey, R. P., Ozioko, A. G., Ponce-González, J., Handl, M., Weissbach, T., Varcoe, J. R., Holdcroft, S., Liberatore, M. W., Hiesgen, R., & Dekel, D. R. (2018). Water Uptake Study of Anion Exchange Membranes. Macromolecules, 51(9), 3264–3278. https://doi.org/10.1021/acs.macromol.8b00034

Last update:

No citation recorded.

Last update: 2024-03-01 23:44:36

No citation recorded.