skip to main content

Simulation and experimental study of refuse-derived fuel gasification in an updraft gasifier

University of Science and Technology-The University of Danang, Danang, Viet Nam

Received: 22 Oct 2022; Revised: 15 Apr 2023; Accepted: 1 May 2023; Available online: 7 May 2023; Published: 15 May 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
Refuse-derived fuel (RDF) made from the mixture of wood and loose rice husk increases the porosity of the fuel in the furnace to facilitate the gasification process. Simulation results show that CO is concentrated in the incomplete combustion zone and CO2 forms mainly in the fully burned area; CH4 forms in the reduction region, while H2 forms in the region of high temperature of the furnace. When the mixture composition was f=0.3, the CO concentration in the syngas reached about 21%, the H2 concentration reached about 2% and the CH4 concentration was too low to be ignored. When the mixture composition increased to f = 0.5, the CO concentration reached about 26%, the H2 concentration remained almost unchanged and the CH4 content increased to 6%. The calorific value of the syngas reached a maximum when f = 0.5 and the temperature of the reduction zone is in the range of 900K to 1200K. Air humidity affects CO concentration but not much on CH4 and H2 concentration as well as the syngas calorific value. The difference between simulation and experimental results is not more than 10% for CH4 concentration and not more than 14% for CO2 concentration. The power of the spark ignition engine is reduced by 30% when running on syngas compared to when running on gasoline.
Fulltext View|Download
Keywords: Refuse-derived fuel; Gasification; Updraft gasifier; Syngas; Waste to energy

Article Metrics:

  1. Ali, A.M., Shahbaz, M., Shahzad, K., Inayat, M., Naqvi, S., Al-Zahrani, A.A., Rashid, M.I., Rehan, M., Mahpudz, A.B., 2023. Polygeneration syngas and power from date palm waste steam gasification through an Aspen Plus process modeling. Fuel 332, 126120. https://doi.org/10.1016/j.fuel.2022.126120
  2. Almutairi, K., Almutairi, M.S., Harb, K.M., Marey, O., 2023. A thorough investigation of renewable energy development strategies through integrated approach: A case study. Energy Sources, Part A Recover. Util. Environ. Eff. 45, 708–726. https://doi.org/10.1080/15567036.2023.2169786
  3. Atabani, A.E., Mahmoud, E., Aslam, M., Naqvi, S.R., Juchelková, D., Bhatia, S.K., Badruddin, I.A., Khan, T.M.Y., Hoang, A.T., Palacky, P., 2022. Emerging potential of spent coffee ground valorization for fuel pellet production in a biorefinery. Environ. Dev. Sustain. https://doi.org/10.1007/s10668-022-02361-z
  4. Bigdeloo, M., Teymourian, T., Kowsari, E., Ramakrishna, S., Ehsani, A., 2021. Sustainability and Circular Economy of Food Wastes: Waste Reduction Strategies, Higher Recycling Methods, and Improved Valorization. Mater. Circ. Econ. 3, 3. https://doi.org/10.1007/s42824-021-00017-3
  5. Bin, Y., Yu, Z., Huang, Z., Li, M., Zhang, Y., Ma, X., 2022. Investigation on the co-pyrolysis of municipal solid waste and sawdust: pyrolysis behaviors, kinetics, and thermodynamic analysis. Energy Sources, Part A Recover. Util. Environ. Eff. 44, 8001–8011. https://doi.org/10.1080/15567036.2022.2116505
  6. Cai, J., Zeng, R., Zheng, W., Wang, S., Han, J., Li, K., Luo, M., Tang, X., 2021. Synergistic effects of co-gasification of municipal solid waste and biomass in fixed-bed gasifier. Process Saf. Environ. Prot. 148, 1–12. https://doi.org/10.1016/j.psep.2020.09.063
  7. Chandrasiri, Y.S., Weerasinghe, W.M.L.I., Madusanka, D.A.T., Manage, P.M., 2022. Waste-Based Second-Generation Bioethanol: A Solution for Future Energy Crisis. Int. J. Renew. Energy Dev. 11, 275–285. https://doi.org/10.14710/ijred.2022.41774
  8. Chen, W.-H., Wang, J.-S., Chang, M.-H., Tuan Hoang, A., Shiung Lam, S., Kwon, E.E., Ashokkumar, V., 2022. Optimization of a vertical axis wind turbine with a deflector under unsteady wind conditions via Taguchi and neural network applications. Energy Convers. Manag. 254, 115209. https://doi.org/10.1016/j.enconman.2022.115209
  9. Dakhel Alhassany, H., Malik Abbas, S., Vera, D., Jurado, F., 2023. Generating electricity from palm waste by gasification technique coupled with externally fired gas turbine: a case study. Energy Sources, Part A Recover. Util. Environ. Eff. 45, 1150–1167. https://doi.org/10.1080/15567036.2023.2176569
  10. Duc Bui, V., Phuong Vu, H., Phuong Nguyen, H., Quang Duong, X., Tuyen Nguyen, D., Tuan Pham, M., Quy Phong Nguyen, P., 2023. Techno-economic assessment and logistics management of biomass in the conversion progress to bioenergy. Sustain. Energy Technol. Assessments 55, 102991. https://doi.org/10.1016/j.seta.2022.102991
  11. Ferreira, C.R.N., Infiesta, L.R., Monteiro, V.A.L., Starling, M.C.V.M., da Silva Júnior, W.M., Borges, V.L., Carvalho, S.R., Trovó, A.G., 2021. Gasification of municipal refuse-derived fuel as an alternative to waste disposal: Process efficiency and thermochemical analysis. Process Saf. Environ. Prot. 149, 885–893. https://doi.org/10.1016/j.psep.2021.03.041
  12. Forouzi Feshalami, B., 2018. Optimal operating scenario for Polerood hydropower station to maximize peak shaving and produced profit. Int. J. Renew. Energy Dev. 7, 233–239. https://doi.org/10.14710/ijred.7.3.233-239
  13. Gałko, G., Mazur, I., Rejdak, M., Jagustyn, B., Hrabak, J., Ouadi, M., Jahangiri, H., Sajdak, M., 2023. Evaluation of alternative refuse-derived fuel use as a valuable resource in various valorised applications. Energy 263, 125920. https://doi.org/10.1016/j.energy.2022.125920
  14. Galvagno, S., Casu, S., Casciaro, G., Martino, M., Russo, A., Portofino, S., 2006. Steam Gasification of Refuse-Derived Fuel (RDF): Influence of Process Temperature on Yield and Product Composition. Energy & Fuels 20, 2284–2288. https://doi.org/10.1021/ef060239m
  15. Gutberlet, J., Uddin, S.M.N., 2017. Household waste and health risks affecting waste pickers and the environment in low- and middle-income countries. Int. J. Occup. Environ. Health 23, 299–310. https://doi.org/10.1080/10773525.2018.1484996
  16. Hassoine, M.A., Lahlou, F., Addaim, A., Ait Madi, A., 2022. Improved Evaluation of The Wind Power Potential of a Large Offshore Wind Farm Using Four Analytical Wake Models. Int. J. Renew. Energy Dev. 11, 35–48. https://doi.org/10.14710/ijred.2022.38263
  17. Hoang, A.T., Nguyen, T.H., Nguyen, H.P., 2020. Scrap tire pyrolysis as a potential strategy for waste management pathway: a review. Energy Sources, Part A Recover. Util. Environ. Eff. 1–18. https://doi.org/10.1080/15567036.2020.1745336
  18. Hoang, A.T., Pandey, A., Chen, W.-H., Ahmed, S.F., Nižetić, S., Ng, K.H., Said, Z., Duong, X.Q., Ağbulut, Ü., Hadiyanto, H., Nguyen, X.P., 2023. Hydrogen Production by Water Splitting with Support of Metal and Carbon-Based Photocatalysts. ACS Sustain. Chem. Eng. 11, 1221–1252. https://doi.org/10.1021/acssuschemeng.2c05226
  19. Hoang, A.T., Varbanov, P.S., Nižetić, S., Sirohi, R., Pandey, A., Luque, R., Ng, K.H., Pham, V.V., 2022. Perspective review on Municipal Solid Waste-to-energy route: Characteristics, management strategy, and role in circular economy. J. Clean. Prod. 359, 131897. https://doi.org/10.1016/j.jclepro.2022.131897
  20. Hongrapipat, J., Rauch, R., Pang, S., Liplap, P., Arjharn, W., Messner, M., Henrich, C., Koch, M., Hofbauer, H., 2022. Co-Gasification of Refuse Derived Fuel and Wood Chips in the Nong Bua Dual Fluidised Bed Gasification Power Plant in Thailand. Energies 15, 7363. https://doi.org/10.3390/en15197363
  21. Ilham, N.I., Hussin, M.Z., Dahlan, N.Y., Setiawan, E.A., 2022. Prospects and Challenges of Malaysia’s Distributed Energy Resources in Business Models Towards Zero – Carbon Emission and Energy Security. Int. J. Renew. Energy Dev. 11, 1089–1100. https://doi.org/10.14710/ijred.2022.45662
  22. James R, A.M., Yuan, W., Boyette, M.D., Wang, D., 2018. Airflow and insulation effects on simultaneous syngas and biochar production in a top-lit updraft biomass gasifier. Renew. Energy 117, 116–124. https://doi.org/10.1016/j.renene.2017.10.034
  23. Jamro, I.A., Chen, G., Baloch, H.A., Wenga, T., Ma, W., 2022. Optimization of municipal solid waste air gasification for higher H2 production along with the validation via kinetics and statistical approaches. Fuel 322, 124137. https://doi.org/10.1016/j.fuel.2022.124137
  24. Jewiarz, M., Mudryk, K., Wróbel, M., Frączek, J., Dziedzic, K., 2020. Parameters Affecting RDF-Based Pellet Quality. Energies 13, 910. https://doi.org/10.3390/en13040910
  25. Kaniowski, W., Taler, J., Wang, X., Kalemba-Rec, I., Gajek, M., Mlonka-Mędrala, A., Nowak-Woźny, D., Magdziarz, A., 2022. Investigation of biomass, RDF and coal ash-related problems: Impact on metallic heat exchanger surfaces of boilers. Fuel 326, 125122. https://doi.org/10.1016/j.fuel.2022.125122
  26. Kardaś, D., Kluska, J., Kazimierski, P., 2018. The course and effects of syngas production from beechwood and RDF in updraft reactor in the light of experimental tests and numerical calculations. Therm. Sci. Eng. Prog. 8, 136–144. https://doi.org/10.1016/j.tsep.2018.08.020
  27. Kharisma, A.D., Amekan, Y., Sarto, S., Cahyanto, M.N., 2022. Effect of Hydrogen Peroxide on Hydrogen Production from Melon Fruit (Cucumis melo L.) Waste by Anaerobic Digestion Microbial Community. Int. J. Renew. Energy Dev. 11, 95–101. https://doi.org/10.14710/ijred.2022.40883
  28. Lee, D.-J., 2022. Gasification of municipal solid waste (MSW) as a cleaner final disposal route: A mini-review. Bioresour. Technol. 344, 126217. https://doi.org/10.1016/j.biortech.2021.126217
  29. Li, Y., Saracoglu, B.O., 2021. Location and investment factors of hydropower plants. Energy Sources, Part A Recover. Util. Environ. Eff. 1–19. https://doi.org/10.1080/15567036.2021.1963015
  30. Maj, I., Kalisz, S., Wejkowski, R., Pronobis, M., Gołombek, K., 2022. High-temperature corrosion in a multifuel circulating fluidized bed (CFB) boiler co-firing refuse derived fuel (RDF) and hard coal. Fuel 324, 124749. https://doi.org/10.1016/j.fuel.2022.124749
  31. Mani, S., Tabil, L.G., Sokhansanj, S., 2006. Effects of compressive force, particle size and moisture content on mechanical properties of biomass pellets from grasses. Biomass and Bioenergy 30, 648–654. https://doi.org/10.1016/j.biombioe.2005.01.004
  32. Mohapatra, P., Swain, A.K., Mishra, J., 2022. Temporal variations of NDVI with responses to climate change in Mayurbhanj district of Odisha from 2015-2020. J. Technol. Innov. 2, 11–15. https://doi.org/10.26480/jtin.01.2022.11.15
  33. Mondal, P., 2022. From municipal solid waste (MSW) to hydrogen: Performance optimization of a fixed bed gasifier using Box-Benkhen method. Int. J. Hydrogen Energy 47, 20064–20075. https://doi.org/10.1016/j.ijhydene.2022.04.150
  34. Nagarajan, J., Balasubramanian, D., Khalife, E., Usman, K.M., 2022. Optimization of compression ignition engine fuelled with Cotton seed biodiesel using Diglyme and injection pressure. J. Technol. Innov. 2, 52–61. https://doi.org/10.26480/jtin.02.2022.52.61
  35. Nguyen-Thi, T.X., Bui, T.M.T., 2023. Effects of Injection Strategies on Mixture Formation and Combustion in a Spark-Ignition Engine Fueled with Syngas-Biogas-Hydrogen. Int. J. Renew. Energy Dev. 12, 118–128. https://doi.org/10.14710/ijred.2023.49368
  36. Nguyen, H.H., Le, B.T.T., 2021. Use of lactic acid bacteria in peanut seed treatment. J. Technol. Innov. 1, 20–22. https://doi.org/10.26480/jtin.01.2021.20.22
  37. Ortiz-Alvarez, M., Piloto-Rodríguez, R., Pohl, S., 2022. Predicting bio-oil yield obtained from lignocellulosic biomass pyrolysis using artificial neural networks. Energy Sources, Part A Recover. Util. Environ. Eff. 44, 247–256. https://doi.org/10.1080/15567036.2022.2044412
  38. Prasertpong, P., Onsree, T., Khuenkaeo, N., Tippayawong, N., Lauterbach, J., 2023. Exposing and understanding synergistic effects in co-pyrolysis of biomass and plastic waste via machine learning. Bioresour. Technol. 369, 128419. https://doi.org/10.1016/j.biortech.2022.128419
  39. Putro, F.A., Pranolo, S.H., Waluyo, J., Setyawan, A., 2020. Thermodynamic Study of Palm Kernel Shell Gasification for Aggregate Heating in an Asphalt Mixing Plant. Int. J. Renew. Energy Dev. 9, 311–317. https://doi.org/10.14710/ijred.9.2.311-317
  40. Rahma, F.N., Tamzysi, C., Hidayat, A., Adnan, M.A., 2021. Investigation of Process Parameters Influence on Municipal Solid Waste Gasification with CO2 Capture via Process Simulation Approach. Int. J. Renew. Energy Dev. 10, 1–10. https://doi.org/10.14710/ijred.2021.31982
  41. Rasaidi, N., Mohamad Daud, A.R., Ismail, S.N., 2022. Kinetic and Thermodynamic Analysis of Thermal Decomposition of Waste Virgin PE and Waste Recycled PE. Int. J. Renew. Energy Dev. 11, 829–838. https://doi.org/10.14710/ijred.2022.41531
  42. Ren, R., Wang, H., You, C., 2022. Steam Gasification of Refuse-Derived Fuel with CaO Modification for Hydrogen-Rich Syngas Production. Energies 15, 8279. https://doi.org/10.3390/en15218279
  43. Rosha, P., Ibrahim, H., 2022. Hydrogen production via solid waste gasification with subsequent amine-based carbon dioxide removal using Aspen Plus. Int. J. Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2022.07.103
  44. Shahab Sokhansanj, Sudhagar Mani, Xiaotao Bi, Parisa Zaini, Lope Tabil, 2005. Binderless Pelletization of Biomass, in: 2005 Tampa, FL July 17-20, 2005. American Society of Agricultural and Biological Engineers, St. Joseph, MI. https://doi.org/10.13031/2013.19922
  45. Shahabuddin, M., Alam, M.T., Krishna, B.B., Bhaskar, T., Perkins, G., 2020. A review on the production of renewable aviation fuels from the gasification of biomass and residual wastes. Bioresour. Technol. 312, 123596. https://doi.org/10.1016/j.biortech.2020.123596
  46. Shahavi, M.H., Esfilar, R., Golestani, B., Sadeghi Sadeghabad, M., Biglaryan, M., 2022. Comparative study of seven agricultural wastes for renewable heat and power generation using integrated gasification combined cycle based on energy and exergy analyses. Fuel 317, 123430. https://doi.org/10.1016/j.fuel.2022.123430
  47. Shahzad Nazir, M., Shahsavar, A., Afrand, M., Arıcı, M., Nižetić, S., Ma, Z., Öztop, H.F., 2021. A comprehensive review of parabolic trough solar collectors equipped with turbulators and numerical evaluation of hydrothermal performance of a novel model. Sustain. Energy Technol. Assessments 45, 101103. https://doi.org/10.1016/j.seta.2021.101103
  48. Sharma, P., Sen, S., Sheth, P.N., Mohapatra, B.N., 2022a. Multizone model of a refused derived fuel gasification: A thermodynamic Semi-empirical approach. Energy Convers. Manag. 260, 115621. https://doi.org/10.1016/j.enconman.2022.115621
  49. Sharma, P., Sheth, P.N., Mohapatra, B.N., 2022b. Recent Progress in Refuse Derived Fuel (RDF) Co-processing in Cement Production: Direct Firing in Kiln/Calciner vs Process Integration of RDF Gasification. Waste and Biomass Valorization 13, 4347–4374. https://doi.org/10.1007/s12649-022-01840-8
  50. Shi, Y., Luo, W., 2018. Application of Solar Photovoltaic Power Generation System in Maritime Vessels and Development of Maritime Tourism. Polish Marit. Res. 25, 176–181. https://doi.org/10.2478/pomr-2018-0090
  51. Sittisun, P., Tippayawong, N., Shimpalee, S., 2019. Gasification of Pelletized Corn Residues with Oxygen Enriched Air and Steam. Int. J. Renew. Energy Dev. 8, 215–224. https://doi.org/10.14710/ijred.8.3.215-224
  52. Son Le, H., Chen, W.-H., Forruque Ahmed, S., Said, Z., Rafa, N., Tuan Le, A., Ağbulut, Ü., Veza, I., Phuong Nguyen, X., Quang Duong, X., Huang, Z., Hoang, A.T., 2022. Hydrothermal carbonization of food waste as sustainable energy conversion path. Bioresour. Technol. 363, 127958. https://doi.org/10.1016/j.biortech.2022.127958
  53. Sprenger, C.J., Tabil, L.G., Soleimani, M., Agnew, J., Harrison, A., 2018. Pelletization of Refuse-Derived Fuel Fluff to Produce High Quality Feedstock. J. Energy Resour. Technol. 140. https://doi.org/10.1115/1.4039315
  54. Stępień, P., Serowik, M., Koziel, J.A., Białowiec, A., 2019. Waste to Carbon: Estimating the Energy Demand for Production of Carbonized Refuse-Derived Fuel. Sustainability 11, 5685. https://doi.org/10.3390/su11205685
  55. Streier, R., Wirtz, S., Aleksandrov, K., Gehrmann, H.-J., Stapf, D., Zhang, M., Vogelbacher, M., Matthes, J., Scherer, V., 2023. Determination of the statistical distribution of drag and lift coefficients of refuse derived fuel by computer vision. Fuel 338, 127122. https://doi.org/10.1016/j.fuel.2022.127122
  56. Styks, J., Wróbel, M., Frączek, J., Knapczyk, A., 2020. Effect of Compaction Pressure and Moisture Content on Quality Parameters of Perennial Biomass Pellets. Energies 13, 1859. https://doi.org/10.3390/en13081859
  57. Tang, G., Gu, J., Wei, G., Huang, Z., Wu, J., Yuan, H., Chen, Y., 2022. Syngas production from cellulose solid waste by enhanced chemical looping gasification using Ca-Fe bimetallic oxygen carrier with porous structure. Fuel 322, 124106. https://doi.org/10.1016/j.fuel.2022.124106
  58. Tejaswini, M.S.S.R., Pathak, P., 2023. Co-combustion of multilayered plastic waste blend with biomass: Thermokinetics and synergistic effect. Fuel 337, 127168. https://doi.org/10.1016/j.fuel.2022.127168
  59. Tulu, T.K., Atnaw, S.M., Bededa, R.D., Wakshume, D.G., Ancha, V.R., 2022. Kinetic Modeling and Optimization of Biomass Gasification in Bubbling Fluidized Bed Gasifier Using Response Surface Method. Int. J. Renew. Energy Dev. 11, 1043–1059. https://doi.org/10.14710/ijred.2022.45179
  60. Ugwu, J., Odo, K.C., Oluka, L.O., Salami, K.O., 2022. A Systematic Review on the Renewable Energy Development, Policies and Challenges in Nigeria with an International Perspective and Public Opinions. Int. J. Renew. Energy Dev. 11, 287–308. https://doi.org/10.14710/ijred.2022.40359
  61. Valizadeh, S., Hakimian, H., Farooq, A., Jeon, B.-H., Chen, W.-H., Hoon Lee, S., Jung, S.-C., Won Seo, M., Park, Y.-K., 2022. Valorization of biomass through gasification for green hydrogen generation: A comprehensive review. Bioresour. Technol. 365, 128143. https://doi.org/10.1016/j.biortech.2022.128143
  62. Veses, A., Sanahuja-Parejo, O., Callén, M.S., Murillo, R., García, T., 2020. A combined two-stage process of pyrolysis and catalytic cracking of municipal solid waste for the production of syngas and solid refuse-derived fuels. Waste Manag. 101, 171–179. https://doi.org/10.1016/j.wasman.2019.10.009
  63. Wang, B., Gupta, R., Bei, L., Wan, Q., Sun, L., 2023. A review on gasification of municipal solid waste (MSW): Syngas production, tar formation, mineral transformation and industrial challenges. Int. J. Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2023.03.086
  64. Wang, H., Ren, R., Liu, B., You, C., 2022. Hydrogen production with an auto-thermal MSW steam gasification and direct melting system: A process modeling. Int. J. Hydrogen Energy 47, 6508–6518. https://doi.org/10.1016/j.ijhydene.2021.12.009
  65. Wang, J., Liu, J., Chen, C., Lv, H., Cheng, J., 2023. Prediction of the ash melting behavior and mineral phase transformation during the co-gasification of waste activated carbon and coal water slurry. Fuel 340, 127522. https://doi.org/10.1016/j.fuel.2023.127522
  66. Wang, S.J., Zhang, Z.Y., Tan, Y., Liang, K.X., Zhang, S.H., 2023. Review on the characteristics of existing hydrogen energy storage technologies. Energy Sources, Part A Recover. Util. Environ. Eff. 45, 985–1006. https://doi.org/10.1080/15567036.2023.2175938
  67. Wowrzeczka, B., 2021. City of Waste—Importance of Scale. Sustainability 13, 3909. https://doi.org/10.3390/su13073909
  68. Yang, Y., Liew, R.K., Tamothran, A.M., Foong, S.Y., Yek, P.N.Y., Chia, P.W., Van Tran, T., Peng, W., Lam, S.S., 2021. Gasification of refuse-derived fuel from municipal solid waste for energy production: a review. Environ. Chem. Lett. 19, 2127–2140. https://doi.org/10.1007/s10311-020-01177-5
  69. Yousef, S., Eimontas, J., Zakarauskas, K., Jančauskas, A., Striūgas, N., 2023. An eco-friendly strategy for recovery of H 2 -CH 4 -rich syngas, benzene-rich tar and carbon nanoparticles from surgical mask waste using an updraft gasifier system. Energy Sources, Part A Recover. Util. Environ. Eff. 45, 5063–5080. https://doi.org/10.1080/15567036.2023.2207507
  70. Zahra, N.L., Septiariva, I.Y., Sarwono, A., Qonitan, F.D., Sari, M.M., Gaina, P.C., Ummatin, K.K., Arifianti, Q.A.M.O., Faria, N., Lim, J.-W., Suhardono, S., Suryawan, I.W.K., 2022. Substitution Garden and Polyethylene Terephthalate (PET) Plastic Waste as Refused Derived Fuel (RDF). Int. J. Renew. Energy Dev. 11, 523–532. https://doi.org/10.14710/ijred.2022.44328
  71. Zhang, Y., Salem, M., Elmasry, Y., Hoang, A.T., Galal, A.M., Pham Nguyen, D.K., Wae-hayee, M., 2022. Triple-objective optimization and electrochemical/technical/environmental study of biomass gasification process for a novel high-temperature fuel cell/electrolyzer/desalination scheme. Renew. Energy 201, 379–399. https://doi.org/10.1016/j.renene.2022.10.059
  72. Zhao, J., Xie, D., Wang, S., Zhang, R., Wu, Z., Meng, H., Chen, L., Wang, T., Guo, Y., 2021. Hydrogen-rich syngas produced from co-gasification of municipal solid waste and wheat straw in an oxygen-enriched air fluidized bed. Int. J. Hydrogen Energy 46, 18051–18063. https://doi.org/10.1016/j.ijhydene.2021.02.137
  73. Zhao, R., Xu, L., Su, X., Feng, S., Li, C., Tan, Q., Wang, Z., 2020. A Numerical and Experimental Study of Marine Hydrogen–Natural Gas–Diesel Tri–Fuel Engines. Polish Marit. Res. 27, 80–90. https://doi.org/10.2478/pomr-2020-0068
  74. Zuo, Z., Feng, Y., Dong, X., Luo, S., Ren, D., Zhang, W., Lin, H., Lin, X., 2022. Energy absorption characteristics and kinetics of carbonaceous solid waste gasification with copper slag as heat carrier. Int. J. Hydrogen Energy 47, 20076–20086. https://doi.org/10.1016/j.ijhydene.2022.04.116

Last update:

No citation recorded.

Last update: 2023-12-08 19:44:58

No citation recorded.