skip to main content

Performance analysis of hybrid PV-diesel-storage system in AGRS-Hassi R’mel Algeria

1Biomaterials and Transport Phenomena Laboratory, University of Medea, BP 164 Medea 26000, Algeria

2Renewable Energy Development Center, CDER, Route de l’ Observatoire, BP.62 Bouzareah Alger 26000, Algeria

Received: 5 May 2023; Revised: 20 Aug 2023; Accepted: 5 Sep 2023; Available online: 15 Sep 2023; Published: 1 Nov 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The main research paper focuses on the optimal hybrid system using HOMER software in the central plant of Hassi R’mel. Indeed, the system is composed of PV panels, a battery bank, and a diesel engine, all of which are used to supply an industrial load. Hence, the present work proposes a solution to optimize the power generated by the power sources, maximize the photovoltaic source use, and minimize the use of the battery bank and the diesel generator. Moreover, the solution aims to guarantee the safe operation of the system components and continuity in the load power supply. These objectives are performed by the minimization of a cost function, in which the power generation cost, the energetic balance, and the environmental parameters are taken into consideration. Among the five solutions, the most optimal system obtained is PV/Diesel/batteries /Grid. This system consists of 1200 KW PV, an 1100 KW diesel generator, 800 units of battery, and an 1100 KW converter. Therefore, to supply the station with 49% of electricity by PV and 51% by diesel while the reduction of emissions is 60%, and 708020 liters of diesel is saved. Applying the sensitivity analysis also showed that renewable resources have an impact on the sizing of PV. When solar radiation increases, the size of renewable energy decreases and the NPC decreases as well. It can, thus, be illustrated that the PV/diesel/battery system is not fully-optimal. This strategy is recommended for industrial system security since it can be used to ensure systems from an energetic and economic point of view.


 

Fulltext View|Download
Keywords: Hybrid power system; technico-economic analysis; solar PV; carbon emission; Hassi R’mel; Homer

Article Metrics:

  1. Abraham, A., Pllana, S., Casalino, G., Ma, K., & Bajaj, A. (Eds.). (2023). Intelligent Systems Design and Applications: 22nd International Conference on Intelligent Systems Design and Applications (ISDA 2022) Held December 12-14, 2022-Volume 4 (Vol. 717). Springer Nature. https://worldcat.org/fr/title/1380994277
  2. Adetoro, S. A., Olatomiwa, L., Tsado, J., & Dauda, S. M. (2023). A comparative analysis of the performance of multiple meta-heuristic algorithms in sizing hybrid energy systems connected to an unreliable grid. e-Prime-Advances in Electrical Engineering, Electronics and Energy, 4, 100140. https://doi.org/10.1016/j.prime.2023.100140
  3. Ajao, K. R., Oladosu, O. A., & Popoola, O. T. (2011). Using HOMER power optimization software for cost benefit analysis of hybrid-solar power generation relative to utility cost in Nigeria. International Journal of Research and Reviews in Applied Sciences, 7(1), 96-102. https://www.arpapress.com/Volumes/Vol7Issue1/IJRRAS_7_1_14.pdf
  4. Ali, M. B., Kazmi, S. A. A., Khan, S. N., & Abbas, M. F. (2023). Techno-economic assessment and optimization framework with energy storage for hybrid energy resources in base transceiver stations-based infrastructure across various climatic regions at a country scale. Journal of Energy Storage, 72, 108036. https://doi.org/10.1016/j.est.2023.108036
  5. Allouhi, A., & Rehman, S. (2023). Grid-connected hybrid renewable energy systems for supermarkets with electric vehicle charging platforms: Optimization and sensitivity analyses. Energy Reports, 9, 3305-3318. https://doi.org/10.1016/j.egyr.2023.02.005
  6. Amani, M., Smaili, A., & Ghenaiet, A. (2020). Thermo-economic assessment of the first integrated solar combined cycle system of hassi r’mel. Mechanics, 26(3), 242-251. https://doi.org/10.5755/j01.mech.26.3.23992
  7. Aouadj, S., Zebirate, S., Smail, R., & Saidi, F. (2021). Optimization of the technical and environmental performance of the renewable energies. Case of the hybrid powerplant “SPPI” of HassiR’mel in the central highlands of Algeria. Environmental Engineering Research, 26(3). https://doi.org/10.4491/eer.2020.056
  8. Arsyad, M., Geraldi, R., Sidik, A. D. W. M., Kusumah, I. H., Artiyasa, M., & Junfithrana, A. P. (2022, July). Study of Solar Photovoltaic Rooftop System for 1300 VA Residential Load Connected to Grid in Sukabumi. In 2022 IEEE 8th International Conference on Computing, Engineering and Design (ICCED) (pp. 1-5). IEEE. https://doi.org/10.1109/ICCED56140.2022.10010420
  9. Aykut, S. C., & Evrard, A. (2017). Une transition pour que rien ne change? Changement institutionnel et dépendance au sentier dans les «transitions énergétiques» en Allemagne et en France. Revue internationale de politique comparée, 24(1), 17-49.. https://www.cairn.info/revue-internationale-de-politique-comparee-2017-1-page-17.htm
  10. Bahramara, S., Moghaddam, M. P., & Haghifam, M. R. (2016). Optimal planning of hybrid renewable energy systems using HOMER: A review. Renewable and Sustainable Energy Reviews, 62, 609-620. https://doi.org/10.1016/j.rser.2016.05.039
  11. Balachander, K., Kumaar, G. S., Mathankumar, M., Manjunathan, A., & Chinnapparaj, S. (2021). Optimization in design of hybrid electric power network using HOMER. Materials Today: Proceedings, 45, 1563-1567. https://doi.org/10.1016/j.matpr.2020.08.318
  12. Baneshi, M., & Hadianfard, F. (2016). Techno-economic feasibility of hybrid diesel/PV/wind/battery electricity generation systems for non-residential large electricity consumers under southern Iran climate conditions. Energy Conversion and Management, 127, 233-244. https://doi.org/10.1016/j.enconman.2016.09.008
  13. Basheer, Y., Waqar, A., Qaisar, S. M., Ahmed, T., Ullah, N., & Alotaibi, S. (2022). Analyzing the Prospect of Hybrid Energy in the Cement Industry of Pakistan, Using HOMER Pro. Sustainability, 14(19), 12440. https://doi.org/10.3390/su141912440
  14. Bentouba, S., & Bourouis, M. (2016). Feasibility study of a wind–photovoltaic hybrid power generation system for a remote area in the extreme south of Algeria. Applied Thermal Engineering, 99, 713-719. https://doi.org/10.1016/j.applthermaleng.2015.12.014
  15. Boukelia E., and Mecibah M.C., (2013). Parabolic trough solar thermal power plant: Potential, and projects development in Algeria. Renewable and Sustainable Energy Reviews 21, 288-297. https://www.sciencedirect.com/science/article/pii/S1364032112006880.pdf
  16. Chel, A., Tiwari, G. N., & Chandra, A. (2009). Simplified method of sizing and life cycle cost assessment of building integrated photovoltaic system. Energy and Buildings, 41(11), 1172-1180. https://doi.org/10.1016/j.enbuild.2009.06.004
  17. Chouaib, A., Messaoud, H., & Salim, M. (2017). Sizing and Optimization for Hybrid Central in South Algeria Based on Three Different Generators. International Journal of Renewable Energy Development, 6(3). https://web.archive.org/web/20180506211745id_/https://ejournal.undip.ac.id/index.php/ijred/article/viewFile/14836/pdf
  18. Das, B. K., Al-Abdeli, Y. M., & Kothapalli, G. (2017). Optimisation of stand-alone hybrid energy systems supplemented by combustion-based prime movers. Applied energy, 196, 18-33.. https://doi.org/10.1016/j.apenergy.2017.03.119
  19. Dekker, J., Nthontho, M., Chowdhury, S., & Chowdhury, S. P. (2012). Economic analysis of PV/diesel hybrid power systems in different climatic zones of South Africa. International Journal of Electrical Power & Energy Systems, 40(1), 104-112. https://doi.org/10.1016/j.ijepes.2012.02.010
  20. Diab, F., Lan, H., Zhang, L., & Ali, S. (2016). An environmentally friendly factory in Egypt based on hybrid photovoltaic/wind/diesel/battery system. Journal of Cleaner Production, 112, 3884-3894 https://doi.org/10.1016/j.jclepro.2015.07.008
  21. Erdinc, O., & Uzunoglu, M. (2012). Optimum design of hybrid renewable energy systems: Overview of different approaches. Renewable and Sustainable Energy Reviews, 16(3), 1412-1425. https://doi.org/10.1016/j.rser.2011.11.011
  22. Ghezloun, A., Oucher, N., & Chergui, S. (2012). Energy policy in the context of sustainable development: Case of Algeria and Tunisia. Energy Procedia, 18, 53-60 https://doi.org/10.1016/j.egypro.2012.05.017
  23. Halabi, L. M., Mekhilef, S., Olatomiwa, L., & Hazelton, J. (2017). Performance analysis of hybrid PV/diesel/battery system using HOMER: A case study Sabah, Malaysia. Energy conversion and management, 144, 322-339. https://doi.org/10.1016/j.enconman.2017.04.070
  24. Hamidat, A., A. Hadj Arab, and M. Belhamel. "Etude et réalisation d’une mini centrale photovoltaïque hybride pour l’électrification du refuge Assekrem." Journal of Renewable Energies 10.2 (2007): 265-272
  25. Heinbockel, J. H., & Roberts Jr, A. S. (1977). A comparison of GaAs and Si hybrid solar power systems. Solar Energy, 19(3), 291-300. https://doi.org/10.1016/0038-092X(77)90073-1
  26. Hidalgo-Leon, R., Amoroso, F., Urquizo, J., Villavicencio, V., Torres, M., Singh, P., & Soriano, G. (2022). Feasibility study for off-grid hybrid power systems considering an energy efficiency initiative for an island in Ecuador. Energies, 15(5), 1776 https://doi.org/10.3390/en15051776
  27. Issahaku, M., & Kemausuor, F. (2022). Techno-economic comparison of standalone solar PV and hybrid power systems for remote outdoor telecommunication sites in northern Ghana. Ghana Journal of Science, Technology and Development, 8(2), 1-23. https://www.ajol.info/index.php/gjstd/article/view/239581
  28. Jahangir, M. H., Montazeri, M., Mousavi, S. A., & Kargarzadeh, A. (2022). Reducing carbon emissions of industrial large livestock farms using hybrid renewable energy systems. Renewable Energy, 189, 52-65. https://doi.org/10.1016/j.renene.2022.02.022
  29. Khalid, M. H., Shakir, S., Waqas, A., Liaquat, R., & Janjua, A. K. (2023, May). Optimization of industrial hybrid renewable energy system using HOMER. In 2023 International Conference on Emerging Power Technologies (ICEPT) (pp. 1-7). IEEE. https://doi.org/10.1109/ICEPT58859.2023.10152347
  30. Labriet, M., Waaub, J. P., & Prades, J. A. (2000). Stratégies de gestion des gaz ā effets de serre au Québec: grandes lignes et enseignements d’une recherche interdisciplinaire-Rapport de recherche. Natures Sciences Sociétés, 8(4), 68-75. https://doi.org/10.1016/S1240-1307(01)80010-8
  31. Laissaoui, M., Nehari, D., Bouhalassa, A., Hazmoune, M., Lechehab, S., & Touil, A. (2015, December). Thermodynamic analysis of combined CSP-MED desalination in Algeria. In 2015 3rd International Renewable and Sustainable Energy Conference (IRSEC) (pp. 1-6). IEEE https://ieeexplore.ieee.org/abstract/document/7455096/.pdf
  32. León Gómez, J. C., De León Aldaco, S. E., & Aguayo Alquicira, J. (2023). A Review of Hybrid Renewable Energy Systems: Architectures, Battery Systems, and Optimization Techniques. Eng, 4(2), 1446-1467. https://doi.org/10.3390/eng4020084
  33. Li, C., Zhang, L., Qiu, F., & Fu, R. (2022). Optimization and enviro-economic assessment of hybrid sustainable energy systems: The case study of a photovoltaic/biogas/diesel/battery system in Xuzhou, China. Energy Strategy Reviews, 41, 100852. https://doi.org/10.1016/j.esr.2022.100852
  34. Lian, J., Zhang, Y., Ma, C., Yang, Y., & Chaima, E. (2019). A review on recent sizing methodologies of hybrid renewable energy systems. Energy Conversion and Management, 199, 112027.. https://doi.org/10.1016/j.enconman.2019.112027
  35. Mallek, M., Elleuch, M. A., Euchi, J., & Jerbi, Y. (2022, March). Optimal design of a hybrid photovoltaic–wind power system with the national grid using HOMER: A case study in Kerkennah, Tunisia. In 2022 International Conference on Decision Aid Sciences and Applications (DASA) (pp. 725-729). IEEE https://ieeexplore.ieee.org/abstract/document/9765310
  36. Krishna, K. S., & Kumar, K. S. (2015). A review on hybrid renewable energy systems. Renewable and Sustainable Energy Reviews, 52, 907-916. https://doi.org/10.1016/j.rser.2015.07.187
  37. Maouedj, R., Mammeri, A., Draou, M. D., & Benyoucef, B. (2015). Techno-economic analysis of a standalone hybrid photovoltaic-wind system. Application in electrification of a house in Adrar region. Energy Procedia, 74, 1192-1204. https://doi.org/10.1016/j.egypro.2015.07.762
  38. Marneni, A., Kulkarni, A. D., & Ananthapadmanabha, T. (2015). Loss reduction and voltage profile improvement in a rural distribution feeder using solar photovoltaic generation and rural distribution feeder optimization using HOMER. Procedia Technology, 21, 507-513. https://doi.org/10.1016/j.protcy.2015.10.036
  39. Mouheb, M., Hamidat, A., & Loukarfi, L. (2012). Impact of PV compensation in improving the voltage drop in electrical networks LV. Energy Procedia, 18, 751-761. https://doi.org/10.1016/j.egypro.2012.05.091
  40. Nacer, T., Hamidat, A., & Nadjemi, O. (2014). Feasibility study and electric power flow of grid connected photovoltaic dairy farm in Mitidja (Algeria). Energy Procedia, 50, 581-588. https://www.sciencedirect.com/science/article/pii/S1876610214008078pdf
  41. Naderipour, A., Kamyab, H., Klemeš, J. J., Ebrahimi, R., Chelliapan, S., Nowdeh, S. A., & Marzbali, M. H. (2022). Optimal design of hybrid grid-connected photovoltaic/wind/battery sustainable energy system improving reliability, cost and emission. Energy, 257, 124679. https://doi.org/10.1016/j.energy.2022.124679
  42. Nässén, J., & Larsson, J. (2015). Would shorter working time reduce greenhouse gas emissions? An analysis of time use and consumption in Swedish households. Environment and Planning C: Government and Policy, 33(4), 726-745. http://dx.doi.org.www.sndl1.arn.dz/10.1068/c12239
  43. National Office of Meteorology (ONM) https://www.meteo.dz/
  44. Olatomiwa, L., Mekhilef, S., Huda, A. S. N., & Ohunakin, O. S. (2015a). Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria. Renewable Energy, 83, 435-446. https://doi.org/10.1016/j.renene.2015.04.057
  45. Olatomiwa, L., Mekhilef, S., Huda, A. N., & Sanusi, K. (2015b). Techno‐economic analysis of hybrid PV–diesel–battery and PV–wind–diesel–battery power systems for mobile BTS: the way forward for rural development. Energy Science & Engineering, 3(4), 271-285. https://onlinelibrary.wiley.com/doi/full/10.1002/ese3.71
  46. Olatunji, O. O., Adedeji, P. A., Madushele, N., Rasmeni, Z. Z., & van Rensburg, N. J. (2022). Hybrid standalone microgrid for agricultural last-mile: A techno-economic analysis. Energy Reports, 8, 980-990, https://doi.org/10.1016/j.egyr.2022.10.274
  47. Olson, C., & Lenzmann, F. (2016). The social and economic consequences of the fossil fuel supply chain. MRS Energy & Sustainability, 3, E6. https://www.cambridge.org/core/journals/mrs-energy-and-sustainability/article/social-and-economic-consequences-of-the-fossil-fuel-supply- chain/181CB4D021BA549E64D87B667D3FB987
  48. Raghuwanshi, S. S., Masih, A., & Raghuwanshi, P. (2022). Design and optimisation of stand-alone hybrid energy system for rural areas. International Journal of Ambient Energy, 43(1), 8707- 8721. https://doi.org/10.1080/01430750.2022.2103185
  49. Rekioua, D., Roumila, Z., & Rekioua, T. (2008). Etude d’une centrale hybride photovoltaïque-éolien-diesel. Revue des energies renouvelables, 11(4), 623-633. https://wwwuniv-bejaia.academia.edu/DjamilaRekioua
  50. Rezzouk, H., & Mellit, A. (2015). Feasibility study and sensitivity analysis of a stand-alone photovoltaic–diesel–battery hybrid energy system in the north of Algeria. Renewable and Sustainable Energy Reviews, 43, 1134-1150. https://doi.org/10.1016/j.rser.2014.11.103
  51. Rice, I. K., Zhu, H., Zhang, C., & Tapa, A. R. (2023). A Hybrid Photovoltaic/Diesel System for Off-Grid Applications in Lubumbashi, DR Congo: A HOMER Pro Modeling and Optimization Study. Sustainability, 15(10), 8162. https://doi.org/10.3390/su15108162
  52. Saheb-Koussa, D., Haddadi, M., & Belhamel, M. (2010). Etude de faisabilite et optimisation d’un système hybride (Eolien–photovoltaïque–diesel) a fourniture d’energie electrique totalement autonome (Feasibility study and optimization of a hybrid system (windphotovoltaïque-diesel) is providing fully autonomous electric power). Revue des sciences fondamentales et appliquées, 2(1), 84-95. http://www.univ-eloued.dz/rsfa
  53. Saheb-Koussa, D., Koussa, M., Haddadi, M., & Belhamel, M. (2011). Hybrid options analysis for power systems for rural electrification in Algeria. Energy Procedia, 6, 750-758. https://doi.org/10.1016/j.egypro.2011.05.085
  54. Sakhrieh, A., Al Asfar, J., & Shuaib, N. A. (2022). An optimized off-grid hybrid system for power generation in rural areas. International Journal of Power Electronics and Drive Systems, 13(2), 865.. http://doi.org/10.11591/ijpeds.v13.i2.pp865-872
  55. Salam, M. A., Aziz, A., Alwaeli, A. H., & Kazem, H. A. (2013). Optimal sizing of photovoltaic systems using HOMER for Sohar, Oman. International Journal of Renewable Energy Research, 3(2), 301-307. https://www.academia.edu/download/71830844/Publisher_Version_PDF_24_.pdf
  56. Shakya, S. R., Bajracharya, I., Vaidya, R. A., Bhave, P., Sharma, A., Rupakheti, M., & Bajracharya, T. R. (2022). Estimation of air pollutant emissions from captive diesel generators and its mitigation potential through microgrid and solar energy. Energy reports, 8, 3251-3262. https://doi.org/10.1016/j.egyr.2022.02.084
  57. Silva, S. B., Severino, M. M., & De Oliveira, M. A. G. (2013). A stand-alone hybrid photovoltaic, fuel cell and battery system: A case study of Tocantins, Brazil. Renewable energy, 57, 384-389. https://www.sciencedirect.com/science/article/pii/S0960148113001018
  58. Stambouli, A. B. (2011). Promotion of renewable energies in Algeria: Strategies and perspectives. Renewable and sustainable energy reviews, 15(2), 1169-1181. https://doi.org/10.1016/j.rser.2010.11.017
  59. Tay, G., Acakpovi, A., Adjei, P., Aggrey, G. K., Sowah, R., Kofi, D., & Sulley, M. (2022, July). Optimal sizing and techno-economic analysis of a hybrid solar PV/wind/diesel generator system. In IOP Conference Series: Earth and Environmental Science (Vol. 1042, No. 1, p. 012014). IOP Publishing. https://iopscience.iop.org/article/10.1088/1755-1315/1042/1/012014/meta
  60. Tazvinga, H., Xia, X., & Zhang, J. (2013). Minimum cost solution of photovoltaic–diesel–battery hybrid power systems for remote consumers. Solar Energy, 96, 292-299. https://doi.org/10.1016/j.solener.2013.07.030
  61. Thirunavukkarasu, M., & Sawle, Y. (2020, September). Design, analysis and optimal sizing of standalone PV/diesel/battery hybrid energy system using HOMER. In IOP Conference Series: Materials Science and Engineering (Vol. 937, No. 1, p. 012034). IOP Publishing. https://iopscience.iop.org/article/10.1088/1757899X/937/1/012034/meta
  62. Tissot, B. (2001). Quel avenir pour les combustibles fossiles? Les avancées scientifiques et technologiques permettront-elles la poursuite d'un développement soutenable avec les énergies carbonées?. Comptes Rendus de l'Académie des Sciences-Serie. https://doi.org/10.1016/S1251-8050(01)01692-5
  63. Ur Rashid, M., Ullah, I., Mehran, M., Baharom, M. N. R., & Khan, F. (2022). Techno-economic analysis of grid-connected hybrid renewable energy system for remote areas electrification using homer pro. Journal of Electrical Engineering & Technology, 17(2), 981-997. https://link.springer.com/article/10.1007/s42835-021-00984-2
  64. Yakub, A. O., Same, N. N., Owolabi, A. B., Nsafon, B. E. K., Suh, D., & Huh, J. S. (2022). Optimizing the performance of hybrid renewable energy systems to accelerate a sustainable energy transition in Nigeria: A case study of a rural healthcare centre in Kano. Energy Strategy Reviews, 43, 100906. https://doi.org/10.1016/j.esr.2022.100906

Last update:

  1. HOMER optimization of standalone PV/Wind/Battery powered hydrogen refueling stations located at twenty selected French cities

    Fakher Oueslati. International Journal of Renewable Energy Development, 12 (6), 2023. doi: 10.14710/ijred.2023.58218
  2. Artificial intelligence computational techniques of flywheel energy storage systems integrated with green energy: A comprehensive review

    Abdelmonem Draz, Hossam Ashraf, Peter Makeen. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 10 , 2024. doi: 10.1016/j.prime.2024.100801
  3. Techno-Economic Analysis of Hybrid Renewable Energy Systems for Power Interruptions: A Systematic Review

    Bonginkosi A. Thango, Lawrence Obokoh. Eng, 5 (3), 2024. doi: 10.3390/eng5030112

Last update: 2024-12-23 12:21:20

No citation recorded.