skip to main content

Enhancing the performance of water-based PVT collectors with nano-PCM and twisted absorber tubes

1Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

2Mechanical Engineering, Department of Mechanical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

3Al-Awsat Technical University, 31001, Iraq

Received: 16 May 2023; Revised: 26 Jul 2023; Accepted: 2 Aug 2023; Available online: 8 Aug 2023; Published: 1 Sep 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The study investigated the thermal performance of a photovoltaic thermal (PVT) collector with a twisted absorber tube and nanoparticle-enhanced phase change material (nano-PCM). The PVT collector consisted of twisted absorber tubes, a container filled with nano-PCM, and a photovoltaic (PV) panel. To assess its efficiency, five different configurations were tested using an indoor solar simulator. The configurations analyzed were as follows: (a) an unenhanced PV panel, (b) PVT with circular absorber tubes (C-PVT), (c) PVT with twisted absorber tubes (T-PVT), (d) C-PVT with nano-PCM (C-PVT-PCM), and (e) T-PVT with nano-PCM (T-PVT-PCM). The thermal, photovoltaic, and combined photovoltaic-thermal efficiencies were evaluated at varying mass flow rates (0.008-0.04kg/s) and a constant solar irradiance of 800W/m2. Among the configurations tested, the T-PVT-PCM configuration demonstrated the highest performance. Specifically, at a mass flow rate of 0.04kg/s, solar irradiance of 800W/m2, and an ambient temperature of 27°C, it achieved photovoltaic, thermal, and combined photovoltaic-thermal efficiencies of 9.46%, 79.40%, and 88.86%, respectively. The utilization of twisted absorber tubes in the design notably improved thermal efficiency by enhancing heat transmission between the liquid and the tube surface. Furthermore, the implementation of T-PVT-PCM led to a significant reduction in surface temperature. Compared to the unenhanced PV panel, it lowered the surface temperature by approximately 30°C, and when compared to C-PVT-PCM, it reduced it by around 10°C. Notably, T-PVT-PCM outperformed the unenhanced PV panel by exhibiting a 34.5% higher photovoltaic efficiency. Overall, the study highlights the performance of the PVT collector with twisted absorber tubes and nanoparticle-enhanced phase change material. The innovative design achieved remarkable thermal efficiency, reduced surface temperatures, and significantly enhanced photovoltaic efficiency compared to traditional configurations. These findings contribute to the development of more efficient and versatile solar energy systems with the potential for broader applications in renewable energy technology.

Fulltext View|Download
Keywords: PVT-PCM; Twisted absorber tube; Nano-PCM; Photovoltaic thermal efficiency; Primary Energy Saving efficiency
Funding: Dr. Adnan Ibrahim/FRGS/1/2019/TK07/UKM/02/4

Article Metrics:

  1. Abdallah, S. R., H. Saidani-Scott and O. E. Abdellatif (2019). Performance analysis for hybrid PV/T system using low concentration MWCNT (water-based) nanofluid. Solar Energy 181, 108-115; https://doi.org/10.1016/j.solener.2019.01.088
  2. Al-Waeli, A. H., H. A. Kazem, K. Sopian and M. T. Chaichan (2018). Techno-economical assessment of grid connected PV/T using nanoparticles and water as base-fluid systems in Malaysia. International Journal of Sustainable Energy 37(6), 558-575; https://doi.org/10.1080/14786451.2017.1323900
  3. Al-Waeli, A. H. A., M. T. Chaichan, H. A. Kazem and K. Sopian (2017a). Comparative study to use nano-(Al 2 O 3 , CuO, and SiC) with water to enhance photovoltaic thermal PV/T collectors. Energy Conversion and Management 148, 963-973; https://doi.org/10.1016/j.enconman.2017.06.072
  4. Al-Waeli, A. H. A., M. T. Chaichan, K. Sopian, H. A. Kazem, H. B. Mahood and A. A. Khadom (2019a). Modeling and experimental validation of a PVT system using nanofluid coolant and nano-PCM. Solar Energy 177, 178-191; https://doi.org/10.1016/j.solener.2018.11.016
  5. Al-Waeli, A. H. A., H. A. Kazem, M. T. Chaichan and K. Sopian (2019b). Experimental investigation of using nano-PCM/nanofluid on a photovoltaic thermal system (PVT): Technical and economic study. Thermal Science and Engineering Progress 11, 213-230; https://doi.org/10.1016/j.tsep.2019.04.002
  6. Al-Waeli, A. H. A., K. Sopian, M. T. Chaichan, H. A. Kazem, H. A. Hasan and A. N. Al-Shamani (2017b). An experimental investigation of SiC nanofluid as a base-fluid for a photovoltaic thermal PV/T system. Energy Conversion and Management 142, 547-558; https://doi.org/10.1016/j.enconman.2017.03.076
  7. Al-Waeli, A. H. A., K. Sopian, M. T. Chaichan, H. A. Kazem, A. Ibrahim, S. Mat and M. H. Ruslan (2017c). Evaluation of the nanofluid and nano-PCM based photovoltaic thermal (PVT) system: An experimental study. Energy Conversion and Management 151, 693-708; https://doi.org/10.1016/j.enconman.2017.09.032
  8. Al-Waeli, A. H. A., K. Sopian, H. A. Kazem and M. T. Chaichan (2020). Evaluation of the electrical performance of a photovoltaic thermal system using nano-enhanced paraffin and nanofluids. Case Studies in Thermal Engineering 21, https://doi.org/10.1016/j.csite.2020.100678
  9. Alam, T., N. B. Balam, K. S. Kulkarni, M. I. H. Siddiqui, N. R. Kapoor, C. S. Meena, A. Kumar and R. Cozzolino (2021). Performance Augmentation of the Flat Plate Solar Thermal Collector: A Review. Energies 14(19); https://doi.org/10.3390/en14196203
  10. Aste, N., C. del Pero and F. Leonforte (2014). Water flat plate PV–thermal collectors: A review. Solar Energy 102, 98-115; https://doi.org/10.1016/j.solener.2014.01.025
  11. Barbosa, E. G., M. E. V. d. Araujo, M. J. d. Moraes, M. A. Martins, B. G. X. Alves and E. G. Barbosa (2019). Influence of the absorber tubes configuration on the performance of low cost solar water heating systems. Journal of Cleaner Production 222, 22-28; https://doi.org/10.1016/j.jclepro.2019.03.020
  12. Bassam, A. M., K. Sopian, A. Ibrahim, M. F. Fauzan, A. B. Al-Aasam and G. Y. Abusaibaa (2023). Experimental analysis for the photovoltaic thermal collector (PVT) with nano PCM and micro-fins tube nanofluid. Case Studies in Thermal Engineering 41; https://doi.org/10.1016/j.csite.2022.102579
  13. Carmona, M., A. Palacio Bastos and J. D. García (2021). Experimental evaluation of a hybrid photovoltaic and thermal solar energy collector with integrated phase change material (PVT-PCM) in comparison with a traditional photovoltaic (PV) module. Renewable Energy 172, 680-696; https://doi.org/10.1016/j.renene.2021.03.022
  14. Chow, T. T. (2010). A review on photovoltaic/thermal hybrid solar technology. Applied Energy 87(2), 365-379; https://doi.org/10.1016/j.apenergy.2009.06.037
  15. Coventry, J. S. and K. Lovegrove (2003). Development of an approach to compare the ‘value’ of electrical and thermal output from a domestic PV/thermal system. Solar Energy 75(1), 63-72; https://doi.org/10.1016/s0038-092x(03)00231-7
  16. Fudholi, A., K. Sopian, M. H. Yazdi, M. H. Ruslan, A. Ibrahim and H. A. Kazem (2014). Performance analysis of photovoltaic thermal (PVT) water collectors. Energy Conversion and Management 78, 641-651; https://doi.org/10.1016/j.enconman.2013.11.017
  17. Herrando, M., A. Ramos, I. Zabalza and C. N. Markides (2019). A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors. Applied Energy 235, 1583-1602; https://doi.org/10.1016/j.apenergy.2018.11.024
  18. Holman, J. P. (2011). Experimental methods for engineers. New York, McGraw-Hill Series in Mechanical Engineering
  19. Ibrahim, A., M. Y. Othman, M. H. Ruslan, S. Mat and K. Sopian (2011). Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renewable and Sustainable Energy Reviews 15(1), 352-365; https://doi.org/10.1016/j.rser.2010.09.024
  20. Kaviarasu, C. and D. Prakash (2016). Review on Phase Change Materials with Nanoparticle in Engineering Applications. Journal of Engineering Science & Technology Review 9(4), https://doi.org/10.25103/jestr.094.05
  21. Kazem, H. A. (2019). Evaluation and analysis of water-based photovoltaic/thermal (PV/T) system. Case Studies in Thermal Engineering 13; https://doi.org/10.1016/j.csite.2019.100401
  22. Khoshvaght-Aliabadi, M. and Z. Arani-Lahtari (2016). Forced convection in twisted minichannel (TMC) with different cross section shapes: A numerical study. Applied Thermal Engineering 93, 101-112; https://doi.org/10.1016/j.applthermaleng.2015.09.010
  23. Kline, S. J. (1953). Describing uncertainty in single sample experiments. Mech. Engineering 75, 3-8; https://doi.org/10.1016/0894-1777(88)90043-X
  24. Lari, M. O. and A. Z. Sahin (2017). Design, performance and economic analysis of a nanofluid-based photovoltaic/thermal system for residential applications. Energy Conversion and Management 149, 467-484; https://doi.org/10.1016/j.enconman.2017.07.045
  25. Lee, J. H., S. G. Hwang and G. H. Lee (2019). Efficiency Improvement of a Photovoltaic Thermal (PVT) System Using Nanofluids. Energies 12(16); https://doi.org/10.3390/en12163063
  26. Liang, R., J. Zhang, L. Ma and Y. Li (2015). Performance evaluation of new type hybrid photovoltaic/thermal solar collector by experimental study. Applied Thermal Engineering 75, 487-492; https://doi.org/10.1016/j.applthermaleng.2014.09.075
  27. Menon, G. S., S. Murali, J. Elias, D. S. Aniesrani Delfiya, P. V. Alfiya and M. P. Samuel (2022). Experimental investigations on unglazed photovoltaic-thermal (PVT) system using water and nanofluid cooling medium. Renewable Energy 188, 986-996; https://doi.org/10.1016/j.renene.2022.02.080
  28. Missoum, M. and L. Loukarfi (2021). Investigation of a Solar Polygeneration System for a Multi-Storey Residential Building-Dynamic Simulation and Performance Analysis. International Journal of Renewable Energy Development 10(3), 445-458; https://doi.org/10.14710/ijred.2021.34423
  29. Nazir, H., M. Batool, F. J. Bolivar Osorio, M. Isaza-Ruiz, X. Xu, K. Vignarooban, P. Phelan, Inamuddin and A. M. Kannan (2019). Recent developments in phase change materials for energy storage applications: A review. International Journal of Heat and Mass Transfer 129, 491-523; https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126
  30. Rejeb, O., L. Gaillard, S. Giroux-Julien, C. Ghenai, A. Jemni, M. Bettayeb and C. Menezo (2020). Novel solar PV/Thermal collector design for the enhancement of thermal and electrical performances. Renewable Energy 146, 610-627; https://doi.org/10.1016/j.renene.2019.06.158
  31. Sabry, M., A. Lashin and M. Al Turkestani (2021). Experimental and simulation investigations of CPV/TEG hybrid system. Journal of King Saud University - Science 33(2); https://doi.org/10.1016/j.jksus.2020.101321
  32. Sardarabadi, M., M. Passandideh-Fard, M.-J. Maghrebi and M. Ghazikhani (2017). Experimental study of using both ZnO/ water nanofluid and phase change material (PCM) in photovoltaic thermal systems. Solar Energy Materials and Solar Cells 161, 62-69; https://doi.org/10.1016/j.solmat.2016.11.032
  33. Shahsavar, A., M. Eisapour and P. Talebizadehsardari (2020). Experimental evaluation of novel photovoltaic/thermal systems using serpentine cooling tubes with different cross-sections of circular, triangular and rectangular. Energy 208; https://doi.org/10.1016/j.energy.2020.118409
  34. Shahsavar, A., P. Jha, M. Arıcı and P. Estellé (2021a). Experimental investigation of the usability of the rifled serpentine tube to improve energy and exergy performances of a nanofluid-based photovoltaic/thermal system. Renewable Energy 170, 410-425; https://doi.org/10.1016/j.renene.2021.01.117
  35. Shahsavar, A., P. Jha, M. Arici and G. Kefayati (2021b). A comparative experimental investigation of energetic and exergetic performances of water/magnetite nanofluid-based photovoltaic/thermal system equipped with finned and unfinned collectors. Energy 220; https://doi.org/10.1016/j.energy.2020.119714
  36. Siecker, J., K. Kusakana and B. P. Numbi (2017). A review of solar photovoltaic systems cooling technologies. Renewable and Sustainable Energy Reviews 79, 192-203; https://doi.org/10.1016/j.rser.2017.05.053
  37. Sopian, K., A. H. A. Al-Waeli and H. A. Kazem (2020). Energy, exergy and efficiency of four photovoltaic thermal collectors with different energy storage material. Journal of Energy Storage 29; https://doi.org/10.1016/j.est.2020.101245
  38. Sopian, K., S. Mat, H. A. Hasan, A. M. Abed and M. H. Ruslan (2016). Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Conversion and Management 124, 528-542; https://doi.org/10.1016/j.enconman.2016.07.052
  39. Tirupati Rao, V. and Y. Raja Sekhar (2021). Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review. Energy & Environment, 34(3), 690–735; https://doi.org/10.1177/0958305x211065575
  40. Touafek, K., A. Khelifa and M. Adouane (2014). Theoretical and experimental study of sheet and tubes hybrid PVT collector. Energy Conversion and Management 80, 71-77; https://doi.org/10.1016/j.enconman.2014.01.021
  41. Touafek, K., A. Malek, M. Haddadi and W. Touafek (2006). Electric and thermal performances of photovoltaic thermal collector in Algeria, world renewable energy congress IX and exhibition, Florence–Italy
  42. Yu, Y., E. Long, X. Chen and H. Yang (2019). Testing and modelling an unglazed photovoltaic thermal collector for application in Sichuan Basin. Applied Energy 242, 931-941; https://doi.org/10.1016/j.apenergy.2019.03.114
  43. Zalba, B., M. J. Marin, L. F. Cabeza and H. Mehling (2003). Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied thermal engineering 23(3), 251-283; https://doi.org/10.1016/S1359-4311(02)00192-8
  44. Zamen, M., M. Kahani, B. Rostami and M. Bargahi (2022). Application of Al2O3/water nanofluid as the coolant in a new design of photovoltaic/thermal system: An experimental study. Energy Science & Engineering; 10(11), 4273-4285 https://doi.org/10.1002/ese3.1067

Last update:

  1. Effects of carbon nanotubes and carbon fibers on the properties of ultra-high performance concrete for offshore wind power generation

    Jing Chen. International Journal of Renewable Energy Development, 13 (4), 2024. doi: 10.61435/ijred.2024.60135
  2. Optimal evaluation of photovoltaic-thermal solar collectors cooling using a half-tube of different diameters and lengths

    Muayad M. Maseer, Firas Basim Ismail, Hussein A. Kazem, Lim Chin Wai, Kumail Abdulkareem Hadi Al-Gburi. Solar Energy, 267 , 2024. doi: 10.1016/j.solener.2023.112193
  3. Performance test of a heliostat field integrated PVT solar collector using organic phase change material and carbon black additives

    Pabitro Prosad Mondal, Md. Atikur Rahman, Md. Shahriar Mohtasim, Md. Golam Kibria, Ashik Hasan, Md. Sanowar Hossain, Pronob Das, Md. Forhad Ibne Al Imran, Mohd. Rafiqul A. Beg. Energy Reports, 12 , 2024. doi: 10.1016/j.egyr.2024.07.031
  4. Development of advanced machine learning for prognostic analysis of drying parameters for banana slices using indirect solar dryer

    Van Giao Nguyen, Prabhu Paramasivam, Marek Dzida, Sameh M. Osman, Duc Trong Nguyen Le, Dao Nam Cao, Thanh Hai Truong, Viet Dung Tran. Case Studies in Thermal Engineering, 60 , 2024. doi: 10.1016/j.csite.2024.104743
  5. Performance enhancement of photovoltaic/thermal collector semicircle absorber tubes using nanofluid and NPCM

    Muayad M. Maseer, Firas Basim Ismail, Hussein A. Kazem, Dhafer Manea Hachim, Kumail Abdulkareem Hadi Al-Gburi, Miqdam T. Chaichan. Renewable Energy, 233 , 2024. doi: 10.1016/j.renene.2024.121152

Last update: 2024-09-11 04:40:26

No citation recorded.