Variations of wave energy power in shoaling zone of Benin coastal zone

DOI: https://doi.org/10.14710/ijred.4.1.64-71

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Published: 15-02-2015
Section: Original Research Article
Fulltext PDF Tell your colleagues Email the author

Today, we observe at the population level, that the improvement in comfort is accompanied by an increase in the electrical energy required. The predicted exhaustion of fossil energy resources maintains some speculation. Their unequal geographical distribution justifies the energy dependence of Benin overlooked from outside. So it is urgent to explore the various sources of renewable energy available to Benin. In this work, using measurements made ​​by the Millennium Challenge Account (MCA-Benin) as part of the extension of the port of Cotonou, with Boussinesq equations (Peregrine) and Stokes waves dispersion relation, we characterized the variations of various swell parameters (height, wavelength, velocities) in the shoaling zone on the study site and proceeded to estimate variations in wave energy power from deep waters to the bathymetric breaking point. Finally, the zone with high energy power (where the conversion of this energy into electrical energy would be profitable) of these waves is highlighted on the site, the local water depth at the point of breaking waves is evaluated and results obtained allowed to justify the very energetic character take by these swells on this coast when they are close to the beach.

Keywords

wave energy power; weakly nonlinear waves; Benin coastal zone; wave shoaling; nonlinear Boussinesq equations

  1. Mathias A. Houekpoheha 
    Institut de Mathématiques et de Sciences Physiques (IMSP/UAC) 01BP 613 Porto, Benin
  2. Basile B. Kounouhewa 
    Centre Béninois de la Recherche Scientifique et Technique (CBRST) 03BP 1665 Cotonou, Benin
  3. Joël T. Hounsou 
    Institut de Mathématiques et de Sciences Physiques (IMSP/UAC) 01BP 613 Porto, Benin
  4. Bernard N. Tokpohozin 
    Centre Béninois de la Recherche Scientifique et Technique (CBRST) 03BP 1665 Cotonou, Benin
  5. Jean V. Hounguevou 
    Centre Béninois de la Recherche Scientifique et Technique (CBRST) 03BP 1665 Cotonou, Benin
  6. Cossi. N. Awanou 
    Laboratoire de Physique du Rayonnement FAST-UAC 01BP 526 Cotonou Rép. du Bénin, Benin
  1. Abbasov I. B. (2012) Numerical Simulation of Nonlinear Surface Gravity Waves Transformation under Shallow-Water Conditions. Applied Mathematics, vol 3, pp 135-141,
  2. Ardakani A. and Bridges. J. (2010) Shallow-water sloshing in rotating vessels undergoing prescribed rigid-body motion in two dimensions. Department of Mathematics / University of Surrey / Guildford GU2 7XH UK, pp 1-48.
  3. Babarit A., Rousset J-M., Mouslim H., Aubry J. Ben Ahmed H. et Multon B. (2009) La récupération de l’énergie de la houle, Partie 1 : Caractérisation de la ressource et bases de l’hydrodynamique. revue 3EI, pp.17-25.
  4. Battjes J. A., Bakkenes H. J., JanssenT. T. and van Dongeren A. R. (2004) Shoaling of subharmonic gravity waves. Journal of Geophysical Research, vol. 109, C02009, pp 1-5, doi: 10.1029/2003JC001863.
  5. Bellec S., Colin M. and Ricchiuto M. (2013) Sur des Modèles Asymptotiques en Océanographie. Bacchus Teams-Projects, Research Report n° 8361 - pp 1-39, [hal-00860438, v1].
  6. Bonneton P. (2001) Note sur la propagation des vagues en zone de surf interne, C. R. Acad. Sci. Paris, vol 329, Serie IIb, p. 27–33.
  7. Catalan P. A. and Haller M. C. (2008) “Remote sensing of breaking wave phase speeds with application to non-linear depth inversions”, Coastal Engineering, vol 55, pp 93 – 111,
  8. Chazel F. (2007) “Influence de la topographie sur les ondes de surfaces”, Thèse N°d'ordre 3436 de l'Université de Bordeaux I, (Ecole doctorale de Mathématiques et Informatiques), pp 1-139.
  9. Degbe C. G. E., Oyede L. M. et Laïbi R. A. (2010) “Mise en valeur des zones littorales et risques environnementaux : quelles stratégies pour un développement durable en Afrique de l’Ouest et du Centre”, International Dredging Days, Libreville (Gabon), 1-12.
  10. Didenkulova I. I. and Pelnovsky E. N. (2008) “Run-up of long wave on a Beach: The influence of the incident wave form”, Oceanologiya (Marine Physics), Vol. 48, 5-10.
  11. Fenton J. D. (1990) “Nonlinear Wave Theories”, the Sea, Vol.9: Ocean Engineering Science, Eds. B. Le Méhauté and D.M. Hanes, Wiley, New York.
  12. Galan A., Simarro G., Orfila A., Simarro J. and Liu P. L.-F. (2012) “A Fully Nonlinear Model for Water Wave Propagation from Deep to Shallow Waters”, Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 138, No. 5, ©ASCE, ISSN 0733-950X/2012/5-1–10
  13. Gonzalez L. T. (2009) “Calculs exactes des paramètres des principales théories non linéaires des vagues et proposition d'un outil simplifié de calculs”, Thesis N°: 0/1/A/I/X/3/0/1/0/3 of Faculty of Graduate Studies at the University of Laval Québec (Genie Civil), 1-251.
  14. Houekpoheha A. M.; Kounouhewa B. B.; Tokpohozin N. B. and Awanou C. N. (2014) “Estimation de la puissance énergétique éolienne à partir de la distribution de Weibull sur la côte béninoise à Cotonou dans le Golfe de Guinée”, Revue des Energies Renouvelables, Vol. 17 N°3, 489 – 495.
  15. Hsu T.-W., Lin T.-Y., Wen C.-C. And Ou S._H. (2006) “A complementary mild-slope equation derived using higher-order depth function for waves obliquely propagating on sloping bottom”, Phys. Fluids 18(8), 087106, 1-14, © American Institute of Physics.
  16. Kounouhewa B. B.; Houekpoheha A. M.; Tokpohozin N. B.; Awanou C. N. and Chabi-Orou B. J. (2014) “Simulation of swell energy power in Autonomous Port of Cotonou”, J. Rech. Sci. Univ. Lomé (Togo), 2014, Serie E, 16(2) : 183-193
  17. Kounouhewa B. B.; Tokpohozin N. B.; Houekpoheha A. M.; Awanou C. N. and Chabi-Orou B. J. (2014) “ Simulation of the energy power of the internal marine currents at Port of Cotonou in Benin and its impact on the seabed”, J. Rech. Sci. Univ. Lomé (Togo), Serie E, 16(3): 175-185
  18. Lannes D. and Bonneton P. (2009), “Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation”, Physics of Fluids DOI: 10.1063/ 1.3053183, 21, 016601, 1-9.
  19. Panchang G. V., Pearce R. B., Wei G. an,d Cushman-Roisin B. (1991) “Solution of the mild-slope wave problem by iteration”, Applied Ocean Research, 1991, Vol 13, N°4.
  20. Sabatier F. (2001) “Fonctionnement et Dynamiques morpho-sédimentaires du littoral du Delta du Rhone”, Thesis N°: 0/1/A/I/X/3/0/1/0/3 of AIX-Marseille II University, (Doctoral School of the Faculty of Science and Technology of Saint Jerome).
  21. Senechal N., Bonneton B. and Dupuis H. (2004) “Paramétrisation de l’énergie des vagues en zone de surf interne: Profil de plage « plane » et profil de plage à barres”, Revue Paralia, VIII National Days Civil Engineering - Coastal Engineering, Compiègne
  22. Senechal N. (200 3) “Etude de la propagation des vagues au-dessus d’une bathymétrie complexe en zone de surf”, thesis of Bordeaux I University, N°: 2759, 1-288.
  23. Shengcheng J. (2013) “Simulation 3D des ondes de batillage générées par le passage des bateaux et des processus associée de transport de sédiments”, Thesis, University of Technology of Compiègne (UTC), D2068, 1-153.
  24. Tissier M. (2011) “Etude numérique de la transformation des vagues en zone littorale, de la zone de levée aux zones de surf et de jet de rive”, Thesis N°: 4437 of University of Bordeaux I, (Graduate School Science and Environments), 1-193.
  25. Tsai C-P., Chenh-B. and Huang M-J. (2002) “Wave Shoaling on Steep Slopes and Breaking Criteria.”, Kitakyushu, Japan, Copyright © 2002 by The International Society of Offshore and Polar Engineers ISBN 1-880653-58-3 (Set); ISSN 1098-6189 (Set), 617-621
  26. Umeyama M. (2010) “Eulerian-Lagrangian analysis for particle velocities and trajectories in a pure wave motion using particle image velocimetry”, Mathematical, Physical and Engineering sciences, doi: 10.1098/rsta.2011.0450.
  27. Webster W. C., Duan W. and Zhao B. (2011) “Green-Naghdi Theory, Part A: Green-Naghdi (GN) Equations for Shallow Water Waves”, J. Marine Sci. Appl., 10, 253-258, DOI: 10.1007/s11804-011-1066-1
  28. Wu J. and Chen B., 2003. Unsteady ship waves in shallow water of varying depth based on Green–Naghdi equation, Ocean Engineering, 30, 1899–1913.
  29. Zou Q., Hay A. E. and Bowen J. A. (2003) “Vertical structure of surface gravity waves propagating over a sloping seabed: Theory and field measurements”. Journal of Geophysical Research 108 (C8, 3265), doi: 10.1029/2002JC001432, 21.1-21.15.