skip to main content

Performance characterization of a novel PV/T panel with nanofluids under the climatic conditions of Muscat, Oman

Mechanical and Industrial Engineering Department, Sultan Qaboos University, Muscat, Oman

Received: 28 Mar 2023; Revised: 25 Jul 2023; Accepted: 24 Aug 2023; Available online: 30 Aug 2023; Published: 1 Sep 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract
The study presents an experimental analysis of a novel mini channels-based Photovoltaic/Thermal (PV/T) panel with nanofluid flow. The design consists of a PV plate attached to an aluminum substrate absorber plate having minichannels grooved on it to act as a solar collector and cooling mechanism for PV. The proposed design was tested for thermal and electrical efficiencies under the working fluids of water, Al2O3, and SiO2 nanofluids at 0.1% and 0.2% concentrations in water and at a flow rate of 0.005 l/s to 0.045 l/s. The experiments were carried out outdoors in a real environment and the measurements were taken for PV surface and fluid temperatures, incidence solar flux, electrical voltage, and current produced. The PV and PV/T performance was compared, and a noticeable enhancement in electrical efficiency was observed with the proposed design as compared to the bare PV module, and an appreciable augmentation in thermal efficiency was noticed when nanofluids were applied. The maximum electrical and thermal efficiencies of PV/T with 0.2% Al2O3 nanofluid were 19.1% and 73.4%, respectively; whereas for bare PV panels, the electrical efficiency was 18.7%. The Al2O3 nanofluid at 0.2% exhibited more than a 10% increase in thermal efficiency compared to water as a working fluid in PV/T.
Fulltext View|Download
Keywords: Photovoltaic/Thermal; nanofluids; aluminum absorber; minichannels; efficiency enhancement
Funding: https://www.moheri.gov.om/default.aspx?culture=en

Article Metrics:

  1. Abbas, N., Bilal, M., Amer, M., Muhammad, S., Sajjad, U., Muhammad, H., Zahra, N., Hussain, M., Badshah, M. A., & Turab, A. (2019). Applications of nanofluids in photovoltaic thermal systems : A review of recent advances. Physica A, 536, 122513. https://doi.org/10.1016/j.physa.2019.122513
  2. Abdallah, S. R., Saidani-Scott, H., & Abdellatif, O. E. (2019). Performance analysis for hybrid PV/T system using low concentration MWCNT (water-based) nanofluid. Solar Energy, 181(October 2018), 108–115. https://doi.org/10.1016/j.solener.2019.01.088
  3. Aberoumand, S., Ghamari, S., & Shabani, B. (2018). Energy and exergy analysis of a photovoltaic thermal ( PV / T ) system using nano fl uids : An experimental study. Solar Energy, 165(January), 167–177. https://doi.org/10.1016/j.solener.2018.03.028
  4. Adun, H., Adedeji, M., Dagbasi, M., Bamisile, O., Senol, M., & Kumar, R. (2021). A numerical and exergy analysis of the effect of ternary nanofluid on performance of Photovoltaic thermal collector. Journal of Thermal Analysis and Calorimetry, 145(3), 1413–1429. https://doi.org/10.1007/s10973-021-10575-y
  5. Al-Masalha, I., Ujila, S., Masuri, B., Badran, O., Anuar, M. K., Ariffin, M., Rahim, A., Talib, A., & Alfaqs, F. (2023). Theoretical and Experimental Study on the Performance of Photovoltaic using Porous Media Cooling under Indoor Condition. 12(2), 313–326. https://doi.org/10.14710/ijred.2023.47686
  6. Al-Rawahi, N. Z., Zurigat, Y. H., & Al-azri, N. A. (2016). Investigating different diffuse solar radiation models to analyse solar radiation on inclined surfaces in Oman. International Journal of Sustainable Energy, 35(8), 757–773. https://doi.org/10.1080/14786451.2014.950961
  7. Al-Rawahi, N. Z., Zurigat, Y. H., & Al-Azri, N. A. (2011). Prediction of hourly solar radiation on horizontal and inclined surfaces for Muscat/Oman. Journal of Engineering Research, 8(2), 19–31. https://doi.org/10.24200/tjer.vol8iss2pp19-31
  8. Al-Shamani, A. N., Sopian, K., Mat, S., Abdulrasool, H., Abed, A. M., & Ruslan, M. H. (2016). Experimental studies of rectangular tube absorber photovoltaic thermal collector with various types of nanofluids under the tropical climate conditions. Energy Conversion and Management, 124, 528–542. https://doi.org/10.1016/j.enconman.2016.07.052
  9. Al-Shamani, A. N., Yazdi, M. H., Alghoul, M. A., Abed, A. M., Ruslan, M. H., Mat, S., & Sopian, K. (2014). Nanofluids for improved efficiency in cooling solar collectors – A review. Renewable and Sustainable Energy Reviews, 38, 348–367. https://doi.org/10.1016/j.rser.2014.05.041
  10. Al-Waeli, A. H. A., Chaichan, M. T., Kazem, H. A., & Sopian, K. (2017). Comparative study to use nano- ( Al 2 O 3 , CuO , and SiC ) with water to enhance photovoltaic thermal PV / T collectors. Energy Conversion and Management, 148, 963–973. https://doi.org/10.1016/j.enconman.2017.06.072
  11. Al-Waeli, A. H. A., Sopian, K., Kazem, H. A., & Chaichan, M. T. (2017). Photovoltaic/Thermal (PV/T) systems: Status and future prospects. Renewable and Sustainable Energy Reviews, 77(November 2016), 109–130. https://doi.org/10.1016/j.rser.2017.03.126
  12. Amir, M., Bin, A., Ibrahim, A., Sopian, K., Fauzan, M. F., Rahmat, A. A., Jannah, N., & Yusaidi, B. (2023). Performance and economic analysis of a reversed circular flow jet impingement bifacial PVT solar collector. International Journal of Renewable Energy Development, 12(4), 780–788. https://doi.org/10.14710/ijred.2023.54348
  13. Batchelor, G. K. (1977). The effect of Brownian motion on the bulk stress in a suspension of spherical particles. Journal of Fluid Mechanics, 83(1), 97–117. https://doi.org/10.1017/S0022112077001062
  14. Bianco, V., Scarpa, F., & Tagliafico, L. A. (2018). Numerical analysis of the Al2O3-water nanofluid forced laminar convection in an asymmetric heated channel for application in flat plate PV/T collector. Renewable Energy, 116, 9–21. https://doi.org/10.1016/j.renene.2017.09.067
  15. Charalambous, P. G., Maidment, G. G., Kalogirou, S. A., & Yiakoumetti, K. (2007). Photovoltaic thermal ( PV / T ) collectors : A review. Applied Thermal Engineering, 27, 275–286. https://doi.org/10.1016/j.applthermaleng.2006.06.007
  16. Cui, Y., Zhu, J., Zoras, S., & Zhang, J. (2021). Comprehensive review of the recent advances in PV / T system with loop-pipe configuration and nanofluid. Renewable and Sustainable Energy Reviews, 135(April 2020), 110254. https://doi.org/10.1016/j.rser.2020.110254
  17. Das, D., Kalita, P., & Roy, O. (2018). Flat plate hybrid photovoltaic- thermal ( PV / T ) system : A review on design and development. Renewable and Sustainable Energy Reviews, 84(October 2017), 111–130. https://doi.org/10.1016/j.rser.2018.01.002
  18. Diwania, S., Agrawal, S., Siddiqui, A. S., & Singh, S. (2020). Photovoltaic – thermal ( PV / T ) technology : a comprehensive review on applications and its advancement. International Journal of Energy and Environmental Engineering, 11(1), 33–54. https://doi.org/10.1007/s40095-019-00327-y
  19. Faizal, M., Saidur, R., Mekhilef, S., & Alim, M. A. (2013). Energy , economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Conversion and Management, 76, 162–168. https://doi.org/10.1016/j.enconman.2013.07.038
  20. Fayaz, H., Nasrin, R., Rahim, N. A., & Hasanuzzaman, M. (2018). Energy and exergy analysis of the PVT system: Effect of nano fluid flow rate. Solar Energy, 169(May), 217–230. https://doi.org/10.1016/j.solener.2018.05.004
  21. Gang, P., Huide, F., Tao, Z., & Jie, J. (2011). A numerical and experimental study on a heat pipe PV/T system. Solar Energy, 85(5), 911–921. https://doi.org/10.1016/j.solener.2011.02.006
  22. Garud, K. S., Hwang, S.-G., Han, J.-W., & Lee, M.-Y. (2022). Symmetry Review on Performance Enhancement of Photovoltaic / Thermal – Thermoelectric Generator Systems with Nanofluid Cooling. Symmetry 14(1), 2–22. https://doi.org/10.3390/sym14010036
  23. Hader, M., & Al-Kouz, W. (2019). Performance of a hybrid photovoltaic/thermal system utilizing water-Al2O3 nanofluid and fins. International Journal of Energy Research, 43(1), 219–230. https://doi.org/10.1002/er.4253
  24. Hussain, M. I., Kim, J. H., & Kim, J. T. (2019). Nanofluid-powered dual-fluid photovoltaic/thermal (PV/T) system: Comparative numerical study. Energies, 12(5), 775. https://doi.org/10.3390/en12050775
  25. Jatoi, A. R., Samo, S. R., & Jakhrani, A. Q. (2018). Influence of Temperature on Electrical Characteristics of Different Photovoltaic Module Technologies. International Journal of Renewable Energy Development, 7(2), 85–91. https://doi.org/10.14710/ijred.7.2.85-91
  26. Khanjari, Y., Pourfayaz, F., & Kasaeian, A. B. (2016). Numerical investigation on using of nanofluid in a water-cooled photovoltaic thermal system. Energy Conversion and Management, 122, 263–278. https://doi.org/10.1016/j.enconman.2016.05.083
  27. Lari, M. O., & Sahin, A. Z. (2017). Design , performance and economic analysis of a nano fl uid-based photovoltaic / thermal system for residential applications. Energy Conversion and Management, 149(April), 467–484. https://doi.org/10.1016/j.enconman.2017.07.045
  28. Ma, T., Yang, H., Zhang, Y., Lu, L., & Wang, X. (2015). Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook. Renewable and Sustainable Energy Reviews, 43, 1273–1284. https://doi.org/10.1016/j.rser.2014.12.003
  29. Maadi, S. R. (2017). Effects of Nanofluids Thermo-Physical Properties on the Heat Transfer and 1 st law of Thermodynamic in a Serpentine PVT System. 17th Conference On Fluid Dynamics, 27–29
  30. Maadi, S. R., Kolahan, A., Passandideh Fard, M., & Sardarabadi, M. (2017). Effects of Nanofluids Thermo-Physical Properties on the Heat Transfer and 1st law of Thermodynamic in a Serpentine PVT System. 17th Conference On Fluid Dynamics, Shahrood University of Technology, Shahrood, Iran, 27–29
  31. Maadi, S. R., Navegi, A., Solomin, E., Ahn, H. S., Wongwises, S., & Mahian, O. (2021). Performance improvement of a photovoltaic-thermal system using a wavy-strip insert with and without nanofluid. Energy, 234(December 2015), 121190. https://doi.org/10.1016/j.energy.2021.121190
  32. Martial, E. A. A. A., Njomo, D., & Agrawal, B. (2015). Thermal energy optimization of building integrated semi-transparent photovoltaic thermal systems. International Journal of Renewable Energy Development, 4(2), 113–123. https://doi.org/10.14710/ijred.4.2.113-123
  33. Maxwell, J. C. (1873). A treatise on electricity and magnetism (Vol. 1). Clarendon press. https://doi.org/10.1017/CBO9780511709333
  34. Michael, J. J., & Iniyan, S. (2015a). Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide - water nanofluid. Solar Energy, 119, 439–451. https://doi.org/10.1016/j.solener.2015.06.028
  35. Michael, J. J., & Iniyan, S. (2015b). Performance analysis of a copper sheet laminated photovoltaic thermal collector using copper oxide – water nanofluid. Solar Energy, 119, 439–451. https://doi.org/10.1016/j.solener.2015.06.028
  36. Moradi, K., Ali Ebadian, M., & Lin, C. X. (2013). A review of PV/T technologies: Effects of control parameters. International Journal of Heat and Mass Transfer, 64, 483–500. https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.044
  37. Ngo, C. X., Do, N. Y., & Vuong, Q. (2022). Modeling and Experimental Studies on Water Spray Cooler for Commercial Photovoltaic Modules. International Journal of Renewable Energy Development, 11(4), 926–935. https://doi.org/10.14710/ijred.2022.46209
  38. Nijmeh, S., Yaseen, A. B., Ashhab, M. S., & Juaidy, M. (2022). Numerical Investigation of a Solar PV/T Air Collector Under the Climatic Conditions of Zarqa, Jordan. International Journal of Renewable Energy Development, 11(4), 963–972. https://doi.org/10.14710/ijred.2022.45306
  39. Peng, C., Huang, Y., & Wu, Z. (2011). Building-integrated photovoltaics (BIPV) in architectural design in China. Energy and Buildings, 43(12), 3592–3598. https://doi.org/10.1016/j.enbuild.2011.09.032
  40. PicoTech. (2021). PT-104 Data Logger. Online. https://www.picotech.com/download/datasheets/usb-pt-104-prt-data-logger-data-sheet.pdf
  41. Qeays, I. A., Yahya, S. M., Asjad, M., & Khan, Z. A. (2020). Multi-performance optimization of nanofluid cooled hybrid photovoltaic thermal system using fuzzy integrated methodology. Journal of Cleaner Production, 256, 120451. https://doi.org/10.1016/j.jclepro.2020.120451
  42. Ragab, S., Saidani-scott, H., & Ezzat, O. (2019). Performance analysis for hybrid PV / T system using low concentration MWCNT ( water-based ) nano fl uid. Solar Energy, 181(October 2018), 108–115. https://doi.org/10.1016/j.solener.2019.01.088
  43. Raggie. (2021). RAGGIE-mono-solar-panel. Online. https://www.raggie.net/Content/upload/pdf/202024380/RAGGIE-mono-solar-panel.pdf?rnd=238
  44. Rahmanian, S., & Hamzavi, A. (2020). Effects of pump power on performance analysis of photovoltaic thermal system using CNT nanofluid. Solar Energy, 201(August 2019), 787–797. https://doi.org/10.1016/j.solener.2020.03.061
  45. Said, Z., Arora, S., & Bellos, E. (2018). A review on performance and environmental effects of conventional and nano fluid-based thermal photovoltaics. Renewable and Sustainable Energy Reviews, 94(October 2017), 302–316. https://doi.org/10.1016/j.rser.2018.06.010
  46. Salari, A., Taheri, A., Farzanehnia, A., Passandideh-fard, M., & Sardarabadi, M. (2021). An updated review of the performance of nanofluid-based photovoltaic thermal systems from energy, exergy, economic, and environmental (4E) approaches. Journal of Cleaner Production, 282, 124318. https://doi.org/10.1016/j.jclepro.2020.124318
  47. Sardarabadi, M., Passandideh-fard, M., & Zeinali, S. (2014). Experimental investigation of the effects of silica / water nano fl uid on PV / T ( photovoltaic thermal units ). Energy, 66, 264–272. https://doi.org/10.1016/j.energy.2014.01.102
  48. Skoplaki, E., & Palyvos, J. A. (2009). On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations. Solar Energy, 83(5), 614–624. https://doi.org/10.1016/j.solener.2008.10.008
  49. Tan, D., & Seng, A. K. (2011). Handbook for solar photovoltaic (pv) systems. Singapore: Energy Market Authority. https://policy.asiapacificenergy.org/node/172
  50. Tiwari, A., & Sodha, M. S. (2006). Performance evaluation of solar PV/T system: An experimental validation. Solar Energy, 80(7), 751–759. https://doi.org/10.1016/j.solener.2005.07.006
  51. Tripanagnostopoulos, Y., Nousia, T., Souliotis, M., & Yianoulis, P. (2002). Hybrid photovoltaic/thermal solar systems. Solar Energy, 72(3), 217–234. https://doi.org/10.1016/S0038-092X(01)00096-2
  52. Varmira, K., Baseri, M. M., Khanmohammadi, S., Hamelian, M., & Shahsavar, A. (2021). Experimental study of the effect of sheet-and-sinusoidal tube collector on the energetic and exergetic performance of a photovoltaic-thermal unit filled with biologically synthesized water/glycerol-silver nanofluid. Applied Thermal Engineering, 186(December 2020), 116518. https://doi.org/10.1016/j.applthermaleng.2020.116518
  53. Younis, A., & Alhorr, Y. (2021). Modeling of dust soiling effects on solar photovoltaic performance: A review. Solar Energy, 220(March), 1074–1088. https://doi.org/10.1016/j.solener.2021.04.011
  54. Zhang, X., Zhao, X., Smith, S., Xu, J., & Yu, X. (2012). Review of R & D progress and practical application of the solar photovoltaic / thermal ( PV / T ) technologies. Renewable and Sustainable Energy Reviews, 16(1), 599–617. https://doi.org/10.1016/j.rser.2011.08.026
  55. Zhao, J., Song, Y., Lam, W., Liu, W., Liu, Y., Zhang, Y., & Wang, D. (2011). Solar radiation transfer and performance analysis of an optimum photovoltaic / thermal system. Energy Conversion and Management, 52(2), 1343–1353. https://doi.org/10.1016/j.enconman.2010.09.032

Last update:

  1. A review of photovoltaic/thermal system cooled using mono and hybrid nanofluids

    Hussain Madhi, Sattar Aljabair, Ahmed Abdulnabi Imran. International Journal of Thermofluids, 22 , 2024. doi: 10.1016/j.ijft.2024.100679

Last update: 2024-10-09 11:42:14

No citation recorded.