Improvement of the Performance of Graphite Felt Electrodes for Vanadium-Redox-Flow-Batteries by Plasma Treatment


Article Metrics:
- Abbas, G., Papakonstantinou, P., Iyer,G.R.S., Kirkman,I.W. & Chen, L.I.(2007)Substitutional nitrogen incorporation through rf glow discharge treatment and subsequent oxygen uptake on vertically aligned carbon nanotubes. Physical Review,B75(19), 195429. https://doi.org/10.1103/PhysRevB.75.195429
- Bismarck, A., Kumru, M.E.&Springer, J.(1999)Influence of Oxygen Plasma Treatment of PAN-Based Carbon Fibers on Their Electrokinetic and Wetting Properties.Journal of Colloid and Interface Science, 210(1),60-72. https://doi.org/10.1006/jcis.1998.5912
- Brown, N.M.D., Cui, N. & McKinley, A. (1998)A study of the topography of a glassy carbon surface following low-power radio-frequency oxygenplasma treatment.Applied Surface Science, 133(3), 157-165. https://doi.org/10.1016/S0169-4332(98)00198-6
- Cvelbar, U., Markoli,B., Poberaj, I., Zalar, A., Kosec, L. & Spaić, S.(2006)Formation of functional groups on graphite during oxygen plasma treatment.Applied Surface Science, 253(4),1861-1865. https://doi.org/10.1016/j.apsusc.2006.03.028
- Dunn, B., Kamath, H.& Tarascon, J.M. (2011)Electrical Energy Storage for the Grid: A Battery of Choices.Science, 334(6058),928-935.Jones, C. &Sammann, E. (1989)The effect of low plasmas on carbon fibre surfaces.ONR-URI Composites Program Technikal Report. https://doi.org/10.1126/science.1212741
- Kimura, C., Yamamuro, Y.,Aoki,H. &Sugino, T.(2007)Improved field emission characteristics of carbon nanofibertreated with nitrogen plasma.Diamond and Related Materials16(4-7), 1383-1387. https://doi.org/10.1016/j.diamond.2006.11.084
- Kogelschatz, U. (2003)Dielectric-barrier discharges: Their history, discharge physics, and industrial applications.Plasma Chemistry and Plasma Processing, 23(1), 1-46. https://doi.org/10.1023/A:1022470901385
- Elersic, K I. J., Modic, M., Zaplotnik,R., Vesel, A.&Cvelbar, U. (2011)Modification of surface morphology of graphite by oxygen plasma treatment.Materials Technology, 45(3),233-239
- Nakahara, M. &Sanada, Y. (1993)Modification of pyrolytic graphite surface with plasma irradiation.Journal of Materials Science, 28(5),1327-1333. https://doi.org/10.1007/BF01191973
- Nakahara, M. &Sanada,Y. (1994)Structural changes of a pyrolytic graphite surface oxidized by electrochemical and plasma treatment.Journal of Materials Science, 29(12),3193-3199. https://doi.org/10.1007/BF00356662
- Paredes, J.I., Martinez-Alonso, A.& Tascón, J.M.D (2000)Comparative study of the air and oxygen plasma oxidation of highly oriented pyrolytic graphite: a scanning tunneling and atomic force microscopy investigation.Carbon,38(8),1183-1197. https://doi.org/10.1016/S0008-6223(99)00241-9
- Rousseau, B., Estrade-Szwarckopf, H., Thomann, A.L. & Brault, P.(2003)Stable C-atom displacements on HOPG surface under plasma low-energy argon-ion bombardment.Applied Physics A: Materials Science & Processing, 77(3),591-597. https://doi.org/10.1007/s00339-002-1538-x
- Schreiber, M., Harrer,M.,Whitehead,A.,Bucsich,H.,Dragschitz, M., Seifert, E. & Tymciw, P. (2012)Practical and commercial issues in the design and manufacture of vanadium flow batteries.Journal of Power Sources, 206(0),483-489. https://doi.org/10.1016/j.jpowsour.2010.12.032
- Shao, Y., Wang, X., Engelhard, M., Wang, C., Dai, S., Liu, J., Yang, Z. & Lin, Y. (2010)Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries.Journal of Power Sources, 195(13),4375-4379. https://doi.org/10.1016/j.jpowsour.2010.01.015
- Shao, Y., S. Zhang, Engelhard, M., Li, G., Shao, G., Wang, Y., Liu, J., Aksay, I.A. & Lin, Y. (2010)Nitrogen-doped graphene and its electrochemical applications.Journal of Materials Chemistry, 20(35), 7491-7496. https://doi.org/10.1039/c0jm00782j
- Skyllas-Kazacos, M. (2009)Vanadium Redox-Flow Batteries.Encyclopedia of Electrochemical Power Sources,444-453. https://doi.org/10.1016/B978-044452745-5.00177-5
- Skyllas-Kazacos, M., Chakrabarti, M.H., Hajimolana, S.A., Mjalli, F.S. & Saleem, M.(2011)Progress in Flow Battery Research and Development.Journal of The Electrochemical Society, 158(8), R55-R79. https://doi.org/10.1149/1.3599565
- Sun, B.& Skyllas-Kazacos, M. (1992)a. Chemical modification of graphite electrode materials for vanadium redox flow battery application -part II. Acid treatments.Electrochimica Acta, 37(13), 2459-2465. https://doi.org/10.1016/0013-4686(92)87084-D
- Sun, B. & Skyllas-Kazacos, M. (1992)bModification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment. Electrochimica Acta, 37(7),1253-1260. https://doi.org/10.1016/0013-4686(92)85064-R
- Sun, B. & Skyllas-Kazacos, M.(1991)Chemical modification and electrochemical behaviour of graphite fibre in acidic vanadium solution.Electrochimica Acta, 36(3-4),513-517. https://doi.org/10.1016/0013-4686(91)85135-T
- Wang, W.H. &Wang,X.D.(2007)Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery. Electrochimica Acta, 52(24),6755-6762. https://doi.org/10.1016/j.electacta.2007.04.121
Last update: 2021-04-21 14:46:20
-
Impact of Surface Carbonyl- and Hydroxyl-Group Concentrations on Electrode Kinetics in an All-Vanadium Redox Flow Battery
Yue Li, Javier Parrondo, Shrihari Sankarasubramanian, Vijay Ramani. The Journal of Physical Chemistry C, 123 (11), 2019. doi: 10.1021/acs.jpcc.8b11874 -
A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries
Ki Jae Kim, Min-Sik Park, Young-Jun Kim, Jung Ho Kim, Shi Xue Dou, M. Skyllas-Kazacos. Journal of Materials Chemistry A, 3 (33), 2015. doi: 10.1039/C5TA02613J -
Finite Heterogeneous Rate Constants for the Electrochemical Oxidation of VO2+ at Glassy Carbon Electrodes
Tim Tichter, Jonathan Schneider, Christina Roth. Frontiers in Energy Research, 8 , 2020. doi: 10.3389/fenrg.2020.00155 -
Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode
Jan grosse Austing, Carolina Nunes Kirchner, Eva-Maria Hammer, Lidiya Komsiyska, Gunther Wittstock. Journal of Power Sources, 127 , 2015. doi: 10.1016/j.jpowsour.2014.09.177 -
Design of a miniature flow cell forin situx-ray imaging of redox flow batteries
Journal of Physics D: Applied Physics, 49 (43), 2016. doi: 10.1088/0022-3727/49/43/434002
Last update: 2021-04-21 14:46:20
-
Impact of Surface Carbonyl- and Hydroxyl-Group Concentrations on Electrode Kinetics in an All-Vanadium Redox Flow Battery
Yue Li, Javier Parrondo, Shrihari Sankarasubramanian, Vijay Ramani. The Journal of Physical Chemistry C, 123 (11), 2019. doi: 10.1021/acs.jpcc.8b11874 -
A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries
Ki Jae Kim, Min-Sik Park, Young-Jun Kim, Jung Ho Kim, Shi Xue Dou, M. Skyllas-Kazacos. Journal of Materials Chemistry A, 3 (33), 2015. doi: 10.1039/C5TA02613J -
Impact of surface carbonyl- A nd hydroxyl-group concentrations on electrode kinetics in an all-vanadium redox flow battery
Li Y.. Journal of Physical Chemistry C, 2019. doi: 10.1021/acs.jpcc.8b11874 -
Effects of surface pretreatment of glassy carbon on the electrochemical behavior of V(IV)/V(V) redox reaction
Cao L.. Journal of the Electrochemical Society, 127 (7), 2016. doi: 10.1149/2.0261607jes -
Real-space simulation of cyclic voltammetry in carbon felt electrodes by combining micro X-ray CT data, digital simulation and convolutive modeling
Tichter T.. Electrochimica Acta, 127 , 2020. doi: 10.1016/j.electacta.2020.136487 -
Rotating ring-disc electrode measurements for the quantitative electrokinetic investigation of the V3+-reduction at modified carbon electrodes
Tichter T.. Journal of Electroanalytical Chemistry, 127 , 2020. doi: 10.1016/j.jelechem.2020.113843 -
On the stability of bismuth in modified carbon felt electrodes for vanadium redox flow batteries: An in-operando X-ray computed tomography study
Gebhard M.. Journal of Power Sources, 127 , 2020. doi: 10.1016/j.jpowsour.2020.228695 -
Reprint of “Rotating ring-disc electrode measurements for the quantitative electrokinetic investigation of the V3+-reduction at modified carbon electrodes”
Tichter T.. Journal of Electroanalytical Chemistry, 127 , 2020. doi: 10.1016/j.jelechem.2020.114759 -
Steady-State Measurements of Vanadium Redox-Flow Batteries to Study Particular Influences of Carbon Felt Properties
Schweiss R.. ChemElectroChem, 4 (8), 2017. doi: 10.1002/celc.201700280 -
Lithium Battery Transient Response as a Diagnostic Tool
Denisov E.. Journal of Electronic Materials, 47 (8), 2018. doi: 10.1007/s11664-018-6346-y -
Key materials of vanadium flow batteries: Electrodes
Fan X.. Redox Flow Batteries: Fundamentals and Applications, 2017. doi: 10.1201/9781315152684 -
Influence of bulk fibre properties of PAN-based carbon felts on their performance in vanadium redox flow batteries
Schweiss R.. Journal of Power Sources, 127 , 2015. doi: 10.1016/j.jpowsour.2014.12.081 -
Study of an unitised bidirectional vanadium/air redox flow battery comprising a two-layered cathode
Jan grosse Austing, Carolina Nunes Kirchner, Eva-Maria Hammer, Lidiya Komsiyska, Gunther Wittstock. Journal of Power Sources, 127 , 2015. doi: 10.1016/j.jpowsour.2014.09.177 -
Carbon electrodes improving electrochemical activity and enhancing mass and charge transports in aqueous flow battery: Status and perspective
Wang R.. Energy Storage Materials, 31 , 2020. doi: 10.1016/j.ensm.2020.06.012 -
Design of a miniature flow cell for in situ x-ray imaging of redox flow batteries
Jervis R.. Journal of Physics D: Applied Physics, 49 (43), 2016. doi: 10.1088/0022-3727/49/43/434002 -
What decides the kinetics of V2+/V3+ and VO2+/VO
Leuaa P.. Journal of Electroanalytical Chemistry, 127 , 2020. doi: 10.1016/j.jelechem.2020.1145902 + redox reactions – Surface functional groups or roughness? -
Finite Heterogeneous Rate Constants for the Electrochemical Oxidation of VO2+ at Glassy Carbon Electrodes
Tichter T.. Frontiers in Energy Research, 8 , 2020. doi: 10.3389/fenrg.2020.00155 -
The importance of wetting in carbon paper electrodes for vanadium redox reactions
Goulet M.. Carbon, 101 , 2016. doi: 10.1016/j.carbon.2016.02.011

This journal provides immediate open access to its content on the principle that making research freely available to the public supports a greater global exchange of knowledge. Articles are freely available to both subscribers and the wider public with permitted reuse.
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options: Creative Commons Attribution-ShareAlike (CC BY-SA). Authors and readers can copy and redistribute the material in any medium or format, as well as remix, transform, and build upon the material for any purpose, even commercially, but they must give appropriate credit (cite to the article or content), provide a link to the license, and indicate if changes were made. If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.