Tin (II) Chloride Catalyzed Esterification of High FFA Jatropha Oil: Experimental and Kinetics Study

*Ratna Dewi Kusumaningtyas -  Department of Chemical Engineering, Gadjah Mada University Chemical Engineering Program, Faculty of Engineering, Semarang State University, Indonesia
Prima Astuti Handayani -  Chemical Engineering Program, Faculty of Engineering, Semarang State University, Indonesia
Rochmadi Rochmadi -  Department of Chemical Engineering, Gadjah Mada University, Indonesia
Suryo Purwono -  Department of Chemical Engineering, Gadjah Mada University, Indonesia
Arief Budiman -  Department of Chemical Engineering, Gadjah Mada University, Indonesia
Published: 15 Jul 2014.
Open Access
Abstract

Biodiesel is one of the promising energy source alternatives to fossil fuel. To produce biodiesel in a more economical way, the employment of the low-cost feed stocks, such as non-edible oils with high free fatty acid (FFA), is necessary. Accordingly, the esterification reaction of FFA in vegetable oils plays an important role in the biodiesel production. In this work, esterification of FFA contained in Crude Jatropha Oil (CJO) in the presence of tin (II) chloride catalyst in a batch reactor has been carried out. The esterification reaction was conducted using methanol at the temperature of 40-60 °C for 4 hours. The effect of molar ratio of methanol to oil was studied in the range 15:1 to 120:1. The influence of catalyst loading was investigated in the range of 2.5 to 15% w/w oil. The optimum reaction conversion was obtained at 60 °C with the catalyst loading of 10% w/w oil and molar ratio of methanol to oil of 120:1. A pseudo-homogeneous reversible second order kinetic model for describing the esterification of FFA contained in CJO with methanol over tin (II) chloride catalyst was developed based on the experimental data. The kinetic model can fit the data very well.

Other format:

Keywords
Esterification; free fatty acid; tin (II) chloride; biodiesel; kinetics

Article Metrics:

Article Info
Section: Original Research Article
Language: EN
Full Text:
Statistics: 773 734
  1. Ali, S. H., Tarakmah, A., Merchant, S.Q., and Al-Sahhaf, T. (2007) Synthesis of Esters: Development of the Rate Expression or the Dowex 50 Wx8-400 Catalyzed Esterification of Propionic Acid with 1-Propanol. Chem. Eng. Sci., 62, 3197 – 3217.
  2. Alenezi, R., Leeke, G.A., Winterbottom, J.M., Santos, R.C.D., and Khan, A.R. (2010) Esterification Kinetics of Free Fatty Acids with Supercritical Methanol for Biodiesel Production. Energy Conversion and Management, 51, 1055–1059.
  3. Aranda, D. A. G., Santos, R. T. P., Tapanes, N. C. O., Ramos, A. L. D., and Antunes, O. A. C. (2008) Acid-Catalyzed Homogeneous Esterification Reaction for Biodiesel Production from Palm Fatty Acids. Catal. Lett., 122, 20–25.
  4. Aranda, D. A. G., Goncalves, J. A., Peres, J. S., Ramos, A. L. D., de Melo, Jr. C. A. R., Antunes, O. A .C., Furtado, N. C., and Taft, C. A. (2009) The Use of Acids, Niobium Oxide, and Zeolite Catalysts for Esterification Reactions. J. Phys. Org. Chem., 22, 709–716.
  5. Atadashi, I. M., Aroua, M. K., and Abdul Aziz, A. (2011) Biodiesel Separation and Purification: A Review. Renew. Energy, 36(2), 437-443.
  6. Budiman, A., Kusumaningtyas, R. D., Sutijan, Rochmadi, Purwono, S. (2009) Second Generation of Biodiesel Production from Indonesian Jatropha Oil by Continuous Reactive Distillation Process. Asean Journal of Chemical Engineering, 9(2), 35 – 48.
  7. Da Silva, M. J., Goncalves, C. E., and Laier, L. O. (2011) Novel Esterification of Glycerol Catalysed by Tin Chloride (II): A Recyclable and Less Corrosive Process For Production Of Bioadditives. Catalysis Letters, 141(8), 1111–1117.
  8. Dermibas, A. (2005) Biodiesel Production from Vegetable Oils via Catalytic and Non-Catalytic Supercritical Methanol Transesterification Methods. Progress in Energy and Combustion Science, 31, 466–487.
  9. Deshmane, V. G., and Adewuyi, Y. G. (2013) Synthesis and Kinetics of Biodiesel Formation via Calcium Methoxide Base Catalyzed Transesterification Reaction in the Absence and Presence of Ultrasound. Fuel, 107, 474-482.
  10. Ferreira, A. B., Cardoso, A. L., and da Silva, M. C. (2012) Tin-Catalyzed Esterification and Transesterification Reactions: A Review. ISRN Renewable Energy, 2012(142857), 1-13.
  11. Freedman, B., Pryde, E. H. and Mounts. T. L. (1984) Variables Affecting the Yields of Fatty Esters from Transesterified Vegetable Oils.. JAOCS, 61(10), 1638-1643.
  12. Gan, S., Ng H. K, Ooi C. W., Motala, N. O., Ismail, M. A. F. (2010) Ferric Sulphate Catalysed Esterification of Free Fatty Acids in Waste Cooking Oil. Bioresource Technology, 101, 7338–7343.
  13. Kusumaningtyas, R.D., Masduki, Hidayat, A., Rochmadi, Purwono, S., and Budiman, A. (2013) A Kinetics Study of Fatty Acid Esterification over Sulfated Zeolite-Zirconium Catalyst for Biodiesel Production. International Seminar on Chemical Engineering, Bio Energy, Chemical and Materials (BioEnChe), October 2013, Bandung, Indonesia.
  14. Lou, W.Y., Zong, M.H., and Duan, Z.Q. (2008) Efficient Production of Biodiesel From High Free Fatty Acid-Containing Waste Oils Using Various Carbohydrate-Derived Solid Acid Catalysts. Bioresource Technology, 99, 8752–8758.
  15. Rattanaphra, D., Harvey, A.P., Thanapimmetha, A., and Srinophakun, P. (2011) Kinetic of Myristic Acid Esterification with Metanol in the Presence of Triglycerides over Sulfated Zirconia. Renewable Energy, 36, 2679-2686.
  16. Russbueldt, B. M. E. and Hoelderich, W. F. (2009) New Sulfonic Acid Ion-Exchange Resins for the Preesterification of Different Oils and Fats with High Content of Free Fatty Acids. Applied Catalysis A: General, 362, 47–57.
  17. Shibasaki-Kitakawa, N., Honda, H., Kuribayashi, H., Toda, T., Fukumura, T., and Yonemoto, T. (2007) Biodiesel Production Using Anionic Ion-Exchange Resin as Heterogeneous Catalyst. Bioresource Technology, 98, 416–421.
  18. Song, C., Qi, Y., Deng, T., Hou, X., and Qin, Z. (2010) Kinetic Model for the Esterification of Oleic Acid Catalyzed by Zinc Acetate in Subcritical Methanol. Renewable Energy , 35, 625–628.
  19. Srilatha, K., Lingaiah, N., Devi, B. L. A. P., Prasad, R. B. N., Venkateswar, S., and Prasad, P. S. S. (2009) Esterification of Free Fatty Acids for Biodiesel Production over Heteropoly Tungstate Supported on Niobia Catalysts. Applied Catalysis A: General, 365(1), 28-33.
  20. Yadav, G. D., Yadav, A. R. (2012) Insight into Esterification of Eugenol to Eugenol Benzoate Using A Solid Super Acidic Modified Zirconia Catalyst UDCaT-5. Chemical Engineering Journal, 192, 146–155.