skip to main content

Gasification of ‘Loose’ Groundnut Shells in a Throathless Downdraft Gasifier

1Department of Mechanical Engineering, University of Agriculture, Makurdi, Benue State,, Niger

2Department of Mechanical Engineering, Landmark University, Omu-Aran, Kwara State, Niger

Published: 15 Jul 2015.
Editor(s):

Citation Format:
Abstract
In this paper, gasification potential of biomass residue was investigated using a laboratory scale throatless downdraft gasifier. Experimental results of groundnut shell was gasified in the throatless downdraft gasifier to produce a clean gas with a calorific value of around 5.92 MJ/Nm3 and a combustible fraction of 45% v/v. Low moisture (8.6%) and ash content (3.19%) are the main advantages of groundnut shells for gasification. It is suggested that gasification of shell waste products is a clean energy alternative to fossil fuels. The product gas can be used efficiently for heating and possible usage in internal combustion engines.
Fulltext View|Download

Article Metrics:

  1. Akay, G., M. Dogru, O. F. Calkan, and B. Calkan., (2005). Biofuels for fuel cells: Renewable energy from biomass fermentation. London: IWA
  2. ASABE Standards. 2007. S269.4. Cubes, pellets and crumbles - Definitions and methods for determining density, durability and moisture content. St. Joseph, Mich.: ASABE
  3. ASTM, 1994. E1755-01. Standard method for ash in biomass (Laboratory Analytical Procedure #005 of NREL): In Standard Biomass Analytical Methods. NREL
  4. ASTM, 2002. D 3175-89a, 1989. Standard test method for volatile matter in the analysis sample of coal and coke. 232-234
  5. Balat, M., and A. Gunhan., (2005). Biomass Energy in the World, Use of Biomass and Potential Trends.Energy Sources 27 (10): 931–940
  6. Bapat, D.W., Kulkarni S.V., Bhandarkar V.P., (1997). Design and operating experience on fluidized bed boiler burning biomass fuels with high alkali ash, In: Preto FDS, editor, Proceedings of the 14th International Conference on Fluidized Bed Combustion, Vancouver, New York, NY: ASME, pp 165–174
  7. Bridgwater A.V., (2003). Renewable fuels and chemicals by thermal processing. Chem Eng J; 91:87-102
  8. Buekens AG, Schoeters JG., (1985). Modeling of biomass gasification. Brussels: VUB
  9. Dogru, M., C. R. Howarth, G. Akay, B. Keskinler, and A. A. Malik., (2002). Gasification of hazelnut shells in a downdraft gasifier. Energy 27 (5): 415–427
  10. Freeman, H.A., Nigam S.N, Kelly, T.G., Ntare, B.R., Subrahmanyam, P and Boughton, D., (1999). The World Groundnut Economy, Facts, Trends and Outlook. Patancheru 502324, Andra Pradesh, India: Information Crops Research Institute for the Semi-Arid Tropics 52pp. ISBN 92-9066-404-5
  11. Hall., D.O., Rosillo-Calle F, de Groot P., (1992). Biomass energy lessons from case studies in developing countries. Energy Policy, pp 62–73
  12. Hall, D.O., Rosillo-Calle F., Woods, J., (1991). Biomass, its importance in balancing CO2 budgets. In: Grassi G, Collina A, Zibetta H, editors. Biomass for energy, industry and environment, 6th E.C. Conference, London: Elsevier Science, pp 89–96
  13. Jain, A.K., Goss, J.R., (2000). Determination of reactor scaling factors for throatless rice husk gasifier, Biomass and Bioenergy 18 249-256
  14. Mamphweli NS, Meyer EL., (2009). Implementation of the biomass gasification project for community empowerment at Melani village, Eastern Cape, South Africa. Renewable Energy; 34:2923-7
  15. McGowan F., (1991). Controlling the greenhouse effect: the role of renewable, Energy Policy, pp 111–118
  16. Midilli, A., M. Dogru, G. Akay, and Howarth, C.R., (2001) Hydrogen Production from Sewage Sludge via a Fixed bed Gasifier Product Gas. International Journal Hydrogen Energy 27 (10):1035–1041
  17. Mohod A.G., Khandetod Y.P., Powar A.G., (2008). Processed cashew shell waste as fuel supplement for heat generation. Energy Sustain Dev; 12:73–6
  18. Singh R.N., Jena U, Patel J.B., (2006). Sharma AM. Feasibility study of cashew nut shells as an open core gasifier feedstock. Renewable Energy; 31:481–7
  19. Tippayawong N, Chaichana C, Swe M.L., (2009). Distributed electricity generation from biomass gasification as a sustainable energy option for rural Myanmar. Int J Distrib Energy Resour; 5:71 –82
  20. Tippayawong, N., Chaichana, A., Promwangkwa, A., Rerkkriangkrai, P., (2011). Gasification of cashew nut shells for thermal application in local food processing factory. Energy Sustain Dev; 15:69-72
  21. Varshney R., Bhagoria.J.L., Mehta.C.R,, (2011) . Experimental investigation on a biomass briquette based throatless downdraft gasifier, International Journal of Applied Engineering Research, Dindigul, Volume 2, No 2
  22. Werther, J., Saenger, M., Hartge, E.U., Ogada, T., Siagi, Z., (2000) Combustion of agricultural residues, Progress in Energy and Combustion Science 26, pp 1–27

Last update:

No citation recorded.

Last update:

No citation recorded.