skip to main content

Metana: Emisi Gas Rumah Kaca dari Ekosistem Karbon Biru, Mangrove

Pusat Penelitian Oseanografi-LIPI, Indonesia

Received: 18 Jun 2019; Published: 9 Sep 2019.
Editor(s): Sudarno Utomo

Citation Format:
Abstract

Kontribusi mangrove terhadap emisi metana global merupakan topik yang sedang diperdebatkan. Ini adalah kajian pustaka dari 154 makalah--yang diakses dari arsip daring, Web of Science– yang mendiskusikan tentang metana di ekosistem mangrove yang dikaji dari berbagai aspek. Namun demikian, hanya 35 makalah yang secara langsung melaporkan tentang volume emisi metana dari ekosistem mangrove. Selebihnya mengkaji tentang metana yang terlarut di dalam air poros (pore-water), mikrobioma dan organisme pembentuk metana, pemindahan gas metana melalui pasang surut, dan geokimia. Kajian emisis gas metana dari sedimen mangrove menunjukkan bahwa secara umum emisinya rendah. Namun, penilaian mendalam terhadap aspek-aspek kajian lainnya serta dikombinaiskan dengan informasi dari kajian-kajian di ekosistem lahan basah air tawar menunjukkan bahwa ekosistem mangrove mungkina menghasilkan emisi gas metana yang tinggi. Kondisi tertentu yang dapat menyebabkan tingginya emisi ini yaitu ketika ada polusi nutrisi di ekosistem mangrove. Hal ini menghasilkan kondisi lingkungan yang cocok bagi metanogen, yaitu kombinasi antara materi organik yang melimpah dan kondisi anerobik. Kemungkinan yang lain adalah ada jalur-jalur lain dalam pelepasan gas metana ke atmosfer. Hal ini disimpulkan dari aksioma bahwa emisi gas metana sedimen mangrove secara alami rendah tapi potensi produksi gas metana tinggi. Mengacu pada aksioma-aksioma ini, maka beberapa pertanyaan penelitian diajukan di sini untuk dijawab pada penelitian-penelitian di masa yang akan datang. Pertanyaan-pertanyaan penelitian ini diajukan untuk mendorong penelitian terkait gas metana di hutan mangrove Indonesia.

Fulltext View|Download
Keywords: Metana, Metanogenesis, Mangrove, Emisi, Produksi
Funding: Australian Awards Scholarship

Article Metrics:

  1. Alongi, D.M., A. Sasekumar, V.C. Chong, J. Pfitzner, L.A. Trott, F. Tirendi, P. Dixon and G.J. Brunskill. 2004. Sediment accumulation and organic material flux in a managed mangrove ecosystem: Estimates of land-ocean-atmosphere exchange in peninsular Malaysia, Marine Geology, 208(2–4): 383–402
  2. Aselmann, I. and P.J. Crutzen. 1989. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions, Journal of Atmospheric Chemistry, 8(4): 307–358
  3. Aulakh, M.S., R. Wassmann, H. Rennenberg. 2001. Methane emissions from rice fields—quantification, mechanisms, role of management, and mitigation options, Advances In Agronomy, 70(C): 193–260
  4. Bartlett, K.B., D.S. Bartlett, R.C. Harriss and D.I. Sebacher. 1987. Methane emissions along a salt marsh salinity gradient, Biogeochemistry, 4(3): 183–202
  5. Belger, L., B.R. Forsberg, J.M. Melack. 2011. Carbon dioxide and methane emissions from interfluvial wetlands in the upper Negro River basin, Brazil, Biogeochemistry, 105(1): 171–183
  6. Biswas, H., S.K. Mukhopadhyay, S. Sen and T.K. Jana. 2007. Spatial and temporal patterns of methane dynamics in the tropical mangrove dominated estuary, NE coast of Bay of Bengal, India, Journal of Marine Systems, 68(1–2): 55–64
  7. Bodelier, P.L., P. Roslev, T. Henckel and P. Frenzel. 2000. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots, Nature, 403: 421–424
  8. Boon, P.I. and A. Mitchell. 1995. Methanogenesis in the sediments of an Australian freshwater wetland: comparison with aerobic decay, and factors controlling methanogenesis, FEMS Microbiology Ecology, 18(3): 175–190
  9. Borges, A.V. and G. Abril. 2011. Carbon dioxide and methane dynamics in estuaries, in Treatise on Estuarine and Coastal Science, Volume 5: Biogeochemistry, eds E. Wolanski and D. McLusky, Academic Press, Waltham
  10. Bouillon, S., J.J. Middelburg, F. Dehairs, A.V. Borges, G. Abril, M.R. Flindt, S. Ulomi and E. Kristensen. 2007. Importance of intertidal intertidal sediment processes and porewater exchange on the water column biogeochemistry in a pristine mangrove creek (Ras Dege, Tanzania), Biogeosciences, 4(3): 311–322
  11. Call, M., D.T. Maher, I.R. Santos, S. Ruiz-Halpern, P. Mangion, C.J. Sanders, D.V. Erler, J.M. Oakes, J. Rosentreter, R. Murray and B.D. Eyre. 2015. Spatial and temporal variability of carbon dioxide and methane fluxes over semi-diurnal and spring-neap-spring timescales in a mangrove creek, Geochimica et Cosmochimica Acta, 150: 211–225
  12. Chambers, L.G., S.E. Davis, T. Troxler, J.N. Boyer, A. Downey-Wall and L.J. Scinto. 2014. Biogeochemical effects of simulated sea level rise on carbon loss in an Everglades mangrove peat soil, Hydrobiologia, 726(1): 195–211
  13. Chen, G.C., N.F.Y. Tam, Y. Ye. 2010. Summer fluxes of atmospheric greenhouse gases N2O, CH4 and CO2 from mangrove soil in South China, Science of the Total Environment, 408(13): 2761–2767
  14. Chen, H., N. Wu, Y. Gao, Y. Wang, P. Luo and J. Tian. 2009. Spatial variations on methane emissions from Zoige alpine wetlands of Southwest China, Science of the Total Environment, 407(3): 1097–1104
  15. Cheng, X., R. Peng, J. Chen, Y. Luo, Q. Zhang, S. An, J. Chen and B. Li. 2007. CH4 and N2O emissions from Spartina alterniflora and Phragmites australis in experimental mesocosms, Chemosphere, 68(3): 420–427
  16. Chowdhury, T.R. and R.P. Dick. 2013. Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands, Applied Soil Ecology, 65: 8–22
  17. Conrad, R., 1999. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments, FEMS Microbiology Ecology, 28: 39–58
  18. Conrad, R., 2007. Microbial ecology of methanogens and methanotrophs, Advances in Agronomy, 96(07): 1–63
  19. Cui, J., C. Li, C. Trettin. 2005. Analyzing the ecosystem carbon and hydrologic characteristics of forested wetland using a biogeochemical process model, Global Change Biology, 11(2): 278–289
  20. Datta, A., J.B. Yeluripati, D.R. Nayak, K.R. Mahata, S.C. Santra and T.K. Adhya. 2013. Seasonal variation of methane flux from coastal saline rice field with the application ofdifferent organic manures, Atmospheric Environment, 66: 114–122
  21. Dean, J.F., J.J. Middelburg, T. Röckmann, R. Aerts, L.G. Blauw, M. Egger, M.S.M. Jetten, A.E.E. de Jong, O.H. Meisel, O. Rasigraf, C.P. Slomp, M.H. in’t Zandt and A.J. Dolman. 2018. Methane Feedbacks to the Global Climate System in a Warmer World, Reviews of Geophysics, 56(1): 207–250
  22. Dutta, M.K., C. Chowdhury, T.K. Jana and S.K. Mukhopadhyay. 2013. Dynamics and exchange fluxes of methane in the estuarine mangrove environment of the Sundarbans, NE coast of India, Atmospheric Environment, 77: 631–639
  23. Fechner, E.J. and H.F. Hemond. 1992. Methane transport and oxidation in the unsaturated zone of a Sphagnum peatland, Global Biogeochemical Cycles, 6(1): 33–44
  24. Fritz, C., V.A. Pancotto, J.T.M. Elzenga, E.J.W. Visser, A.P. Grootjans, A. Pol, R. Iturraspe, J.G.M. Roelofs and A.J.P. Smolders. 2011. Zero methane emission bogs: Extreme rhizosphere oxygenation by cushion plants in Patagonia, New Phytologist, 190(2): 398–408
  25. Garcia, J.L., B.K. Patel, B. Ollivier. 2000. Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea, Anaerobe, 6(4): 205–226
  26. Giani, L., Y. Bashan, G. Holguin and A. Strangmann. 1996. Characteristics and methanogenesis of the Balandra lagoon mangrove soils, Baja California Sur, Mexico’, Geoderma, 72(1–2): 149–160
  27. Inamori, R., P. Gui, P. Dass, M. Matsumura, K.Q. Xu, T. Kondo, Y. Ebie and Y. Inamori. 2007. Investigating CH4 and N2O emissions from eco-engineering wastewater treatment processes using constructed wetland microcosms, Process Biochemistry, 42(3): 363–373
  28. Inubushi, K., H. Sugii, S. Nishino and E. Nishino. 2001. Effect of Aquatic Weeds on Methane Emission from submerged Paddy Soil, American Journal of Botany, 88(6):975979
  29. Jayakumar, D.A., S.W.A. Naqvi, P.V. Narvekar and M.D. George. 2001. Methane in coastal and offshore waters of the Arabian Sea, Marine Chemistry, 74(1): 1–13
  30. Joabsson, A., T.R. Christensen, B. Wallén. 1999. Vascular plant controls on methane emissions from northern peatforming wetlands, Trends in Ecology and Evolution, 14(10): 385–388
  31. Kirschke, S., P. Bousquet, P. Ciais, M. Saunois, J.G. Canadell, E.J. Dlugokencky, P. Bergamaschi, D. Bergmann, D.R. Blake, L. Bruhwiler, P. Cameron-Smith, S. Castaldi, F. Chevallier, L. Feng, A. Fraser, M. Heimann, E.L. Hodson, S. Houweling, B. Josse, P.J. Fraser, P.B. Krummel, J.F. Lamarque, R.L. Langenfelds, C. Le Quéré, V. Naik, S. O’doherty, P.I. Palmer, I. Pison, D. Plummer, B. Poulter, R.G. Prinn, M. Rigby, B. Ringeval, M. Santini, M. Schmidt, D.T. Shindell, I.J. Simpson, R. Spahni, L.P. Steele, S.A. Strode, K. Sudo, S. Szopa, G.R. Van Der Werf, A. Voulgarakis, M. Van Weele, R.F. Weiss, J.E. Williams and G. Zeng. 2013. Three decades of global methane sources and sinks, Nature Geoscience, 6(10): 813–823
  32. Koebsch, F., S. Glatzel, G. Jurasinski. 2013. Vegetation controls methane emissions in a coastal brackish fen, Wetlands Ecology and Management, 21(5): 323–337
  33. Konnerup, D., J.M. Betancourt-Portela, C. Villamil and J.P. Parra. 2014. Nitrous oxide and methane emissions from the restored mangrove ecosystem of the Ciénaga Grande de Santa Marta, Colombia, Estuarine, Coastal and Shelf Science, 140: 43–51
  34. Krupadam, R.J., R. Ahuja, S.R. Wate and Y. Anjaneyulu. 2007. Forest bound estuaries are higher methane emitters than paddy fields: A case of Godavari estuary, East Coast of India, Atmospheric Environment, 41(23): 4819–4827
  35. Liu, Y. and W.B. Whitman. 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea, Annals of the New York Academy of Sciences, 1125: 171–189
  36. Lofton, D.D., S.C. Whalen, A.E. Hershey. 2014. Effect of temperature on methane dynamics and evaluation of methane oxidation kinetics in shallow Arctic Alaskan lakes, Hydrobiologia, 721(1): 209–222
  37. Lyimo, T.J., A. Pol, H.J.M. Op den Camp. 2002. Sulfate Reduction and Methanogenesis in Sediments of Mtoni Mangrove Forest, Ambio, 31(7): 614–616
  38. Lyimo, T.J., A. Pol, M.S.M. Jetten and H.J.M. Op den Camp. 2009. Diversity of methanogenic archaea in a mangrove sediment and isolation of a new Methanococcoides strain, FEMS Microbiology Letters, 291(2): 247–253
  39. Marín-Muñiz, J.L., M.E. Hernández and P. Moreno-Casasola. 2015. Greenhouse gas emissions from coastal freshwater wetlands in Veracruz Mexico: effect of plant community and seasonal dynamics, Atmospheric Environment, 107(26): 107–117
  40. Martins, C.S.C., C.A. Macdonald, I.C. Anderson and B.K. Singh. 2016. Feedback responses of soil greenhouse gas emissions to climate change are modulated by soil characteristics in dryland ecosystems, Soil Biology and Biochemistry. 100: 21–32
  41. Megonigal, J.P., 2002. Methane-limited methanotrophy in tidal freshwater swamps, Global Biogeochemical Cycles, 16(4): 1–10
  42. Megonigal, J.P., M.E. Hines, P.T. Visscher. 2013. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes. Treatise on Geochemistry: Second Edition, 10: 273–359
  43. Megonigal, J.P. and W.H. Schlesinger. 1997. Enhanced CH4
  44. emissions from a wetland soil exposed to elevated CO2, North, 37(1): 77–88
  45. Milich, L., 1999. The role of methane in global warming: where might mitigation strategies be focused? Global Environmental Change, 9(3): 179–201
  46. Oremland, R.S., L.M. Marsh and S. Polcin. 1982. Methane production and simultaneous sulphate reduction in anoxic, salt marsh sediments, Nature, 296(5853): 143–145
  47. Oremland, R.S. and S. Polcin. 1982. Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments, Applied and Environmental Microbiology, 44(6): 1270–1276
  48. Patterson, J.A. and R.B. Hespell. 1979. Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri, Current Microbiology, 3(2): 79–83
  49. Poffenbarger, H.J., B.A. Needelman, J.P. Megonigal. 2011. Salinity influence on methane emissions from tidal marshes, Wetlands, 31: 831–842
  50. Purvaja, R. and R. Ramesh. 2001. Natural and anthropogenic methane emission from coastal wetlands of South India, Environmental Management, 27(4): 547–557
  51. Purvaja, R., R. Ramesh, P. Frenzel. 2004. Plant-mediated methane emission from an Indian mangrove, Global Change Biology, 10(11): 1825–1834
  52. Rajkumar, A.N., J. Barnes, R. Ramesh, R. Purvaja and R.C. Upstill-Goddard. 2008. Methane and nitrous oxide fluxes in the polluted Adyar River and estuary, SE India, Marine Pollution Bulletin, 56(12): 2043–2051
  53. Ramesh, R., G.R. Purvaja, D.C. Parashar, P.K. Gupta and A.P. Mitra. 1997. Anthropogenic forcing on methane flux from polluted wetlands (Adyar River) of Madras City, India, Ambio, 26(6): 369–376
  54. Reay, D.S., P. Smith, T.R. Christensen, R.H. James and H. Clark. 2018. Methane and Global Environmental Change, Annual Review of Environment and Resources, 43:165-192
  55. Reeburgh, W.S., 2003. Global methane biogeochemistry, in The Atmosphere, eds R. F. Keeling, vol.4: Treatise on Geochemistry, eds H. D. Holland and K. K. Turekian, Elsivier Pergamon, Oxford, pp. 65-89
  56. Reshmi, R.R., K. Deepa Nair, E.J. Zachariah and S.G.T. Vincent. 2015. Methanogenesis: Seasonal changes in human impacted regions of Ashtamudi estuary (Kerala, South India), Estuarine, Coastal and Shelf Science, 156(1): 144–154
  57. Roslev, P. and G.M. King. 1996. Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia, FEMS Microbiology Ecology, 19(2): 105–115
  58. Ross, M.S., P.L. Ruiz, G.J. Telesnicki and J.F. Meeder. 2001. Estimating above-ground biomass and production in mangrove communities of Biscayne National Park, Florida (USA), Wetlands Ecology and Management, 9(1): 27–37
  59. Sarmiento, J.L. and N. Gruber. 2006. Ocean Biogeochemical Dynamics, Princeton University Press, Princeton, Woodstock
  60. Schaefer, H., S.E.M. Fletcher, C. Veidt, K.R. Lassey, G.W. Brailsford, T.M. Bromley, E.J. Dlugokencky, S.E. Michel, J.B. Miller, I. Levin, D.C. Lowe, R.J. Martin, B.H. Vaughn and J.W.C. White. 2016. A 21st century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4, Science, 352(6281): 80–84
  61. Scranton, M. and K. McShane. 1991. Methane fluxes in the southern North Sea: the role of European rivers, Continental Shelf Research, 11(1): 37–52
  62. Shalini, A., R. Ramesh, R. Purvaja and J. Barnes. 2006. Spatial and temporal distribution of methane in an extensive shallow estuary, south India, Journal of Earth System Science, 115(4): 451–460
  63. Shannon, R.D. and J.R. White. 1994. A three-year study of controls on methane emissions from two Michigan peatlands, Biogeochemistry, 27(1): 35-60
  64. Siljanen, H.M.P., A. Saari, S. Krause, A. Lensu, G.C.J. Abell, L. Bodrossy, P.L.E. Bodelier and P.J. Martikainen. 2011. Hydrology is reflected in the functioning and community composition of methanotrophs in the littoral wetland of a boreal lake, FEMS Microbiology Ecology, 75(3): 430–445
  65. Smith, L.K., W.M. Lewis, J.P. Chanton, G. Cronin and S.K. Hamilton. 2000. Methane emissions from the Orinoco River floodplain, Venezuela, Biogeochemistry, 51(2): 113–140
  66. Strangmann, A., Y. Bashan, L. Giani. 2008. Methane in pristine and impaired mangrove soils and its possible effect on establishment of mangrove seedlings, Biology and Fertility of Soils, 44(3): 511–519
  67. Sun, Z., L. Wang, H. Tian, H. Jiang, X. Mou and W. Sun. 2013. Fluxes of nitrous oxide and methane in different coastal Suaeda salsa marshes of the Yellow River estuary, China, Chemosphere, 90(2): 856–865
  68. Sundh, I., C. Mikkela, M. Nilsson and B.H. Svensson. 1995. Potential aerobic methane oxidation in a sphagnum-dominated peatland - controlling factors and relation to methane emission, Soil Biology and Biochemistry, 27(6): 829–837
  69. Sutton-Grier, A.E. and J.P. Megonigal. 2011. Plant species traits regulate methane production in freshwater wetland soils, Soil Biology and Biochemistry, 43(2): 413–420
  70. Van Bodegom, P., F. Stams, L. Mollema, S. Boeke and P. Leffelaar. 2001. Methane Oxidation and the Competition for Oxygen in the Rice Rhizosphere, Applied and Environmental Microbiology, 67(8): 3586–3597
  71. Van Der Nat, F., J.J. Middelburg, D. Van Meteren and A. Wielemakers. 1998. Diel Methane Emission Patterns from Scirpus lacustris and Phragmites australis, Biogeochemistry, 41(1): 1–22
  72. Van Der Nat, F. and J.J. Middelburg. 2000. Methane Emission from Tidal Freshwater Marshes, Biogeochemistry, 49(2): 103–121
  73. Vann, C.D. and J.P. Megonigal. 2003. Elevated CO2 and water depth regulation of methane emissions: Comparison of woody and non-woody wetland plant species, Biogeochemistry, 63(2): 117–134
  74. Verma, A., V. Subramanian, R. Ramesh. 2002. Methane emissions from a coastal lagoon: Vembanad Lake, West Coast, India, Chemosphere, 47(8): 883–889
  75. Weimer, P. and J. Zeikus. 1978. One carbon metabolism in methanogenic bacteria. Cellular characterization and growth of Methanosarcina barkeri, Archives of Microbiology, 119(1): 49-57
  76. Whalen, S.C., 2005. Natural wetlands and the atmosphere, Environmental Engineering Science, 22(1): 73–94
  77. Yang, J., J. Liu, X. Hu, X. Li, Y. Wang and H. Li. 2013. Effect of water table level on CO2, CH4 and N2O emissions in a freshwater marsh of Northeast China, Soil Biology and Biochemistry. 61: 52–60
  78. Yavitt, J.B., C.J. Williams, R.K. Wieder. 1997. Production of methane and carbon dioxide in Peatland ecosystems across north America: Effects of temperature, aeration, and organic chemistry of peat, Geomicrobiology Journal, 14(4): 299–316
  79. Young, M., 2005. Methane Cycling and Ground Water Sources in Mangrove-dominated Coastal Lagoons, Yucatan Peninsula, Mexico, Stanford University, Stanford, USA
  80. Yu, B., P. Stott, H. Yu and X. Li. 2013. Methane emissions and production potentials of forest swamp wetlands in the eastern great Xing’an Mountains, Northeast China, Environmental Management, 52(5): 1149–1160
  81. Zhang, C.B., H.Y. Sun, Y. Ge, B.J. Gu, H. Wang and J. Chang. 2012. Plant species richness enhanced the methane emission in experimental microcosms, Atmospheric Environment, 62: 180–183
  82. Zhang, Y. and W. Ding. 2011. Diel methane emissions in stands of Spartina alterniflora and Suaeda salsa from a coastal salt marsh, Aquatic Botany, 95(4): 262–267
  83. Zhuang, G.C., 2014. Methylotrophic Methanogenesis and Potential Methylated Substrates in Marine Sediment, Universitat Bremen, Bremen, Germany

Last update:

  1. Konstentrasi Gas Metana (CH4) di Kawasan Pemukiman Wilayah Pesisir Kelurahan Watolo, Kecamatan Mawasangka, Kabupaten Buton Tengah

    Krisye Krisye, Rahman Rahman, Fahrul Rozy Fakaubun, Frijona Fabiola Lokollo. Grouper, 13 (2), 2022. doi: 10.30736/grouper.v13i2.132
  2. Soil greenhouse gas fluxes to the atmosphere during the wet season across mangrove zones in Benoa Bay, Indonesia

    I Putu Sugiana, Elok Faiqoh, Maria Fernanda Adame, Gede Surya Indrawan, Anak Agung Eka Andiani, I Gusti Ayu Istri Pradnyandari Dewi, I Wayan Eka Dharmawan. Asian Journal of Atmospheric Environment, 17 (1), 2023. doi: 10.1007/s44273-023-00014-9

Last update: 2025-01-21 03:59:30

No citation recorded.