skip to main content

Komposisi Kimia Pencemar Partikulat Kasar dan Halus di DKI Jakarta Pada Musim Hujan dan Musim Kemarau

1Institut Teknologi Bandung, Indonesia

2Pusat Sains dan Teknologi Nuklir Terapan (PSTNT), Badan Tenaga Nuklir Nasional, Indonesia

Received: 26 Sep 2020; Published: 30 Nov 2020.
Editor(s): Sudarno Utomo

Citation Format:

Partikulat yang memberikan dampak negatif terhadap lingkungan dan kesehatan manusia dikategorikan berdasarkan ukurannya yaitu PM10 berukuran <10 μm dan PM2.5 berukuran <2,5 μm.  Dampak terhadap kesehatan akan semakin besar pada ukuran partikulat yang semakin kecil, serta tergantung pada komposisi kimia yang dikandungnya. Penelitian ini difokuskan untuk mengetahui perbedaan komposisi kimia partikulat halus (PM2.5) dan partikulat kasar (PM10-2,5) pada musim hujan dan musim kemarau, serta sumber-sumber pengemisinya. Sampling dilakukan di DKI Jakarta menggunakan alat Gent stacked filter sampler unit pada musim hujan. Hasil pengukuran total massa partikulat dan komposisinya dibandingkan dengan pengukuran pada studi sebelumnya yang dilakukan pada musim kemarau. Massa partikulat ditentukan menggunakan alat neraca semi Mikro Mettler Toledo. Untuk mengetahui unsur-unsur yang terkandung di dalam filter kasar maupun halus digunakan Epsilon 5 EDXRF spectrometer. Analisis korelasi pada komposisi kimia digunakan untuk memprediksi sumber-sumber pengemisi. Hasil perhitungan konsentrasi rata-rata PM2,5 dan PM10-2,5 lebih rendah pada musim hujan dibandingkan dengan pada musim kemarau. Konsentrasi rata-rata partikulat halus di musim hujan adalah sebesar 15,31±0,41 µg/m3 dan partikulat kasar sebesar 28,69±0,56 µg/m3 sedangkan di musim kemarau sebesar 26,76±0,22 µg/m3 dan 35,05±0,28 µg/m3.  Hasil uji t menunjukan bahwa pada musim hujan dan musim kemarau terdapat perbedaan yang signifikan pada komponen kimia penyusun partikulat halus, yaitu BC, Al, Si, S, K, Ca, Ti, Ni, Zn, As.  Untuk partikulat kasar unsur yang menunjukkan perbedaan signifikan adalah Al, Si, S, K, Ca, V, Ni, Cu, As, Cl. Perbedaan konsentrasi rata-rata ini kemungkinan disebabkan oleh terjadinya deposisi basah. Berdasarkan analisis sumber pencemar,  PM2,5 ¬diprediksi berasal dari debu tanah/soil, emisi kendaraan dan pembakaran biomassa serta industri, sedangkan PM(10-PM2,5) bersumber dari garam-garam lautan (sea salt), debu tanah, dan industri.


Particulate matters (PM) have negative impacts on the environment and human health. PM were categorized based on their size, namely PM10 with size <10 μm (coarse) and PM2,5 with size <2.5 μm (fine). The impact on health will be greater at the smaller particulate size, and depending on their chemical composition. This study is focused on the chemical composition of fine and coarse particulate matter in the rainy and dry seasons as well as their potential sources. Sampling was carried out in DKI Jakarta using a Gent stacked filter sampler unit during the rainy season. The measurement results of total particulate mass and its composition were compared with measurements of a previous study conducted during the dry season. The particulate mass was determined using a Mettler Toledo semi-balance instrument. Furthermore, to determine the elements contained in the coarse and fine filters, an Epsilon 5 EDXRF spectrometer was used. Correlation analysis of the chemical composition were used to predict the emission sources. The results demonstrated that the average concentration of PM2,5 and PM(10-2,5) were lower in the rainy season than in the dry season. The average concentration of fine particulates in the rainy season was 15,31 ± 0,41 µg/m3 and coarse particulates was 28,69 ± 0,56 µg/m3. In the dry season it was 26,76 ± 0,22 µg/m3 and 35,05 ± 0,28 µg/m3. The t-test result showed that there was a significant difference between fine particles composition in the rainy season, particularly for BC, Al, Si, S, K, Ca, Ti, Ni, Zn, As. For coarse particulates, the elements that show significant differences were Al, Si, S, K, Ca, V, Ni, Cu, As, Cl. The concentration difference was likely due to wet deposition. Based on the analysis of pollutant sources, PM2,5 was predicted to come from soil dust, vehicle emissions and combustion of biomass and fuel industry, while PM (10-PM2,5) (coarse particles) came from sea salt, ground dust, and industry.

Fulltext View|Download
Keywords: Pencemaran Udara, PM2,5, PM(10-PM2,5), Spesiasi partikulat, Pemantauan kualitas udara
Funding: LPDP-DIPI and Newton Fund-RCUK

Article Metrics:

  1. Ahmad, Eka F. dan Muhayatun Santoso. 2016. Analisis Karaterisasi Konsentrasi dan Komposisi Partikulat Udara (Studi Case: Surabaya). Jurnal Penelitian dan Pengembangan Ilmu Kimia Vol. 2. Hal 97-103
  2. Alleman,L.Y., L. Lamaison, E. Perdrix, A. Robache, J. C. Galloo. 2010. PM10 Metal Concentrations and Source Identification Using Positive Matrix Factorization and Wind Sectoring in A French Industrial Zone. Atmospheric Research Vol. 9. Pages 612–625
  3. Atmodjo, Djoko P. D., Nana Suherman, Syukria K. 2011. Sampling Partikulat Udara pada Lingkungan Udara Terbuka (Ambien). Prosiding Seminar Nasional Sains dan Teknologi Nuklir. Hal 61-67
  4. Banerjee, T., V. Murari, M. Kumar, M. P. Raju. 2015. Source Apportionment of Airbone Particulates Through Receptor Modeling : Indian Scenario. Atmospheric Research. Pages 164-165
  5. Bond,T.C., S. J. Doherty, D. W. Fahey, P. M. Forster,T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan,B. Kärcher,D. Koch. 2013. Bounding the Role of Black Carbon in The Climate System: a Scientific Assessment. Journal of Geophysical Research: Atmospheres, Vol. 118. Pages 5380–5552
  6. Brunekreef, B., D. W. Dockery, M. Krzyzanowski. 1995. Epidemiologic Studies on Short-term Effects of Low Levels of Major Ambient Air Pollution Components. Environmental Health Perspectives Vol. 103. Pages 3–13
  7. Chen, C. H., C. Wu, H C. Chiang, D. Chu, K. Y. Lee, W. Y. Lin, J. Yih, K.W. Tsai, Y. L Guo. 2019. The Effects of Fine and Coarse Particulate Matter on Lung Function Among The Elderly. Vol. 9. Pages 14790
  8. Crilley, L., F. Lucarelli, W. J. Bloss, M. Roy , D. C. Beddows, G. Calzolai, S. Nava, G. Valli, V. Barnardoni, R. Vecchi. 2017. Source Apportionment of Fine and Coarse Particles at A Roadside and Urban Background Site in London During 2012 Summer Clearflo Campaign. Environmental Pollution Vol. 220. Pages 766-778
  9. Davy, P.K., W.J. Trompetter, T. Ancelet, A. Markwitz. 2017. Source Apportionment and Trend Analysis of Air Particulate Matter in The Auckland Region. Prepared by The Institute of Geological and Nuclear Sciences Ltd, GNS Science for Auckland Council. Auckland Council Technical Report, TR2017/001
  10. Driejana, Sari, N.K., M. Santoso. 2020. Composition Characterization of Dry Season Particulate Matters in Jakarta and Their Potential Sources Identification, Manuskrip dalam Preparasi
  11. Environmental Science and Water Resources Vol. 1. Pages 59 – 66
  12. Gotschi, T., J. Heinrich, J. Sunyer, N. Kunzli. 2008. Long-term Effects of Ambient Air Pollution on Lung Function: A Review. Epidemiology (Cambridge, Mass.) Vol. 19. Pages 690–701
  13. Greenstone dan Q. Fan. 2019. Indonesia’s Worsening Air Quality and its Impact on Live Expectancy. Jakarta. Air Quality Life Index
  14. Guo, L. C., L. J. Bao, J. She, E. Y. Zeng. 2014. Significance of Wet Deposition to Removal of Atmospheric Particulate Matter and Polycyclic Aromatic Hydrocarbons : A Case Study in Guangzhou, China. Atmospheric Environment Vol. 83. Pages 136 – 144
  15. Hasan, N.Y., Driejana, A. Sulaeman, H. Ariesyadi. 2019. Chemical Composition and Sources Attribution of Rainwater in Bandung Area, Indonesia. International Journal of GEOMATE Vol. 17. Pages 131-138
  16. Kothai P., I. V. Saradhi, P. Prathibha, P. K. Hopke, G.G. Pandit, V.D. Puranik. 2008. Source Apportionment of Coarse and Fine Particulate Matter at Navi Mumbai, India. Aerosol and Air Quality Research Vol. 8. Pages 423-436
  17. Kusumaningtyas, Sheila, D., Edvin Aldrian, Trinah Wati, Dwi Atmoko, SUnaryo. 2018. The recent of ambient air quality in Jakarta. Aerosol and Air Quality Research, Vol. 18. Pages 2343-2354
  18. Lee, Celine S.L., C. Chou, H.C. Cheung, C. Tsai, W. Huang, S. Huang, M. Chen, H. Liao, C. Wu, T. Tsao, M. Tsai, T. Su. 2019. Seasonal Variation of Chemical Characteristics of Fine Particulate Matter at a High-Elevation Subtropical Forest in East Asia. Environmental Pollution Vol. 246. Pages 668-677
  19. Lee, S., W. Liu, Y. Wang, A.G. Russell, E.S. Edgerton. 2008. Source Apportionment of PM2.5: Comparing PMF and CMB Results for Four Ambient Monitoring Sites in The Southeastern United States. Atmospheric Environment Vol. 4. Pages 4126–4137
  20. Lestari P dan Mauliadi. 2009. Source Apportionment of Particulate Matter at Urban Mixed Site in Indonesia Using PMF. Atmospheric Environment Vol. 43. Pages 1760 – 1770
  21. Lestiani, D. M. Santoso, S Kurniawati, A. Markwitz 2014: Application of EDXRF in Supporting National Program of Air Quality Improvement in Indonesia
  22. Lestiani, D. M. Santoso, S Kurniawati, A. Markwitz. 2013. Characteristic of Airborne Particulate Matter Samples Collected from Two Semi Industrial Sites in Bandung, Indonesia. Indo. J. Chem Vol. 13. Pages 271-277
  23. Liu, D., J. Allan, J. Whitehead, D. Young, M. Flynn, H. Coe, G. McFiggans, Z.L. Fleming, B. Bandy. 2013. Ambient Black Carbon Particle Hygroscopic Properties Controlled by Mixing State and Composition. Atmos. Chem. Phys. Vol. 13
  24. Owoade, K., P. Hopke, F. Olise, L. Ogundele, O. Fawole, B. Olaniyi, O. Jegede, M. Ayoola, M. Bashiru. 2015. Chemical Compositions and Source Identification of Particulate Matter (PM2,5 and PM2,5-10) from A Scrap Iron and Steel Smelting Industry Along The Ife-Ibadan Highway, Nigeria. Atmospheric Pollution Research Vol. 6. Pages 107-119
  25. Pearson, J. F., C. Bachireddy, S. Shyamprasad, A. B. Goldfine, J. S. Brownstein. 2010. Association Between Fine Particulate Matter and Diabetes Prevalence in the U.S. Diabetes care, Vol. 33 No. 10. Pages 2196–2201
  26. Rixson, L, E. Riani, M. Santoso. 2015. Charaxterization of Long Term Exposure of Particulate Matter at Puspitek Serpong-South Tangerang. Jurnal Ilmiah Aplikasi Isotop dan Radiasi Vol. 11. Pages 51-64
  27. Santoso M. dan D. D. Lestiani. 2014. Application of ED XRF in Supporting National Program of Air Quality Improvement in Indonesia
  28. Santoso M., D. D. Lestiani, P. K Hopke. 20132. Atmospheric black carbon in PM2.5 in Indonesian Cities. Air And Waste Management Association Vol. 63. Pages 1022-1025
  29. Santoso M., Lestiani D. D., dan Markwitz A. 20131. Characterization of Airbone Particulate Matter Collected at Jakarta Roadside of An Arterial road. Radioanal Nucl Chem. Vol. 297. Pages 165-169
  30. Schober, P., C. Boer, l. A. Schwarte. 2018. Correlation Coeficients : Appropriate Use and Interpretation
  31. Shen, R., K. Schafer, J. Schnelle-Kris, L. Shao, S. Norra, U. Kramer, B. Michalke, G. Abbaszade, T. Streibel, M. Fricker, Y. Chen, R. Zimmermann, S. Emeis, H. Peter. 2016. Characteristics and Sources of PM in Seasonal Perspective- A case Study from One Year Continously Sampling in Beijing. Atmospheric Pollution Research Vol. 7. Pages 235 – 248
  32. Sillanpa, Markus. 2006. Chemical and Source Acharacterisation of Size-Segregated Urban Air Particulate Matter. Helsinki. Finnish Meteorological Institute
  33. Tahri M., M. Bounakhla, H. Ait Bouh, M. Zghaid, A. Benchrif, F. Benyaich, Y. Noack. 2012. Concentrations and Chemical Speciation of Particulate Matter in Two Moroccan Cities; Meknes and Kenitra
  34. Thurston, George D, Kazuhiko Ito, Ramona Lall. 2006. A Source Apportionment of U.S. Fine Particulate Matter Air Pollution. Atmospheric environment Vol. 45 No. 24. Pages 3924-3936
  35. Vallius, Marko. 2005. Characteristics and sources of fine particulate matter in urban air. Finland. University of Kuopio
  36. Wang, H., Y. Zhuang, Y. Wang, Y. Sun, H. Yuan, G. Zhuang, Z. Hao. 2008. Longterm monitoring and source apportionment of PM2.5/PM10 in Beijing, China. J. Environment Science Vol. 20. Pages 1323-1327
  37. World Bank Group (WBG). 1998. Airborne particulate matter. Pollution Prevention and Abatement Handbook
  38. Zannaria, N., Dwina R., M. Santoso. 2009. Karakteristik Kimia Paparan Partikulat Terespirasi. Jurnal Sains dan Teknologi Nuklir Indonesia Vol. 9. Pages 37-50

Last update:

No citation recorded.

Last update:

No citation recorded.