skip to main content

Analisis Beban Pencemar Total Nitrogen dan Total Fosfat akibat Aktivitas Antropogenik di Danau Maninjau

Program Studi Magister Teknik Lingkungan, Fakultas Teknik Universitas Andalas, Indonesia

Received: 2 Apr 2021; Revised: 16 Jun 2021; Accepted: 23 Jun 2021; Available online: 30 Jun 2021; Published: 1 Aug 2021.
Editor(s): H Hadiyanto

Citation Format:
Abstract

Penelitian ini bertujuan untuk menganalisis beban pencemar dan daya tampung total nitrogen (TN) dan total fosfat (TP) akibat dari aktivitas antropogenik di Danau Maninjau. Perhitungan beban pencemar untuk aktivitas penduduk, pertanian, peternakan dan jumlah tamu hotel menggunakan Rapid Assesment. Penetapan  beban pencemar KJA dan daya tampung yang mengacu kepada Peraturan Menteri Lingkungan Hidup No 28 Tahun 2009. Lokasi penelitian yang ditetapkan berdasarkan SNI 6989.57:2008 terdiri dari 10 lokasi yaitu tengah danau, PLTA, KJA, inlet dan outlet danau. Uji ANOVA dengan tingkat kepercayaan 95% digunakan dalam melihat perbedaan data konsentrasi TN dan TP secara waktu pengambilan sampel dan lokasi sampling. Rasio TN:TP dievaluasi untuk mengetahui pembatas kesuburan perairan dan korelasinya terhadap klorofil.Konsentrasi TN berada pada rentang 0,42 – 0,95 mg/L, TP berkisar 0,18-0,66 mg/L dan klorofil-a 5,49-8,69 mg/m3. Hasil uji ANOVA, konsentrasi TN dan TP  secara waktu pengambilan sampel tidak berbeda secara signifikan yaitu 0,64 dan 0,88 sedangkan secara lokasi sampling berbeda secara signifikan dengan nilai signifikansi 0,01 dan 4,03x10-6. TN dan TP memiliki hubungan yang kuat terhadap klorofil dan diperoleh rasio TN:TP<10 yang mengindikasikan nitrogen sebagai pembatas kesuburan. Beban pencemar TN dan TP terbesar berasal dari KJA yang menyumbang hampir 84,20 % dan 91,83% dari total beban pencemar. Ditinjau dari daya tampung mesotrofik beban pencemar TN belum melebihi sedangkan TP telah melebihi daya tampung sehingga perlu pengurangan hingga 71,34% untuk mesotrofik dan 90,44% untuk oligotrofik. Secara keseluruhan status trofik Danau Maninjau berada pada kondisi eutrofik dengan index 63,39.

 

ABSTRACT

This study aims to analyze the pollutant load and the capacity of total nitrogen (TN) and total phosphate (TP) resulting from anthropogenic activities in Lake Maninjau. Calculation of the pollutant load for the activities of the population, agriculture, livestock and the number of hotel guests using Rapid Assessment. Determination of KJA pollutant load and carrying capacity refers to the Regulation of the Minister of Environment No. 28 of 2009. The research locations determined based on SNI 6989.57: 2008 consist of 10 locations, namely the middle of the lake, hydropower plant, marine cage, inlet and outlet. ANOVA test with a 95% confidence level was used to see the differences in TN and TP concentration data in terms of sampling time and sampling location. The TN: TP ratio was evaluated to determine the limitation of water fertility and its correlation to chlorophyll. TN concentrations were in the range 0.42 - 0.95 mg / L, TP ranged from 0.18 to 0.66 mg / L and chlorophyll-a was 5.49. -8.69 mg / m3. ANOVA test results, TN and TP concentrations at sampling time did not differ significantly, namely 0.64 and 0.88, while the sampling location was significantly different with a significance value of 0.01 and 4.03x10-6. TN and TP had a strong relationship to chlorophyll and the TN: TP ratio was obtained <10, which indicates nitrogen as a fertility limiter. The largest TN and TP pollutant load comes from KJA which accounts for almost 84.20% and 91.83% of the total pollutant load. Judging from the mesotrophic capacity of the TN pollutant load has not exceeded while the TP has exceeded the capacity so that it needs a reduction of up to 71.34% for mesotrophic and 90.44% for oligotrophic. Overall, the trophic status of Lake Maninjau is in a eutrophic condition with an index of 63.39.

Fulltext View|Download
Keywords: Antropogenik; Beban Pencemar; Danau Maninjau; Daya Tampung; Total Nitrogen; Total Fosfat

Article Metrics:

  1. APHA. 2017. Standard methods for the examination of water and wastewater. 23th Edition. American Public Health Association. Washington D.C
  2. Beveridge, M. 2004. Cage Aquaculture. UK : Blackwell Publishing. 377 p
  3. Boqiang, Q., G. Guang, Z. Guangwei, Z. Yunlin, S. Yuzhi, T. Xiangming, XU. Hai, and D. Jianming. 2013. Lake eutrophication and its ecosystem response. Chinese Science Bulletin 58 (9): 961–70. https://doi.org/10.1007/s11434-012-5560-x
  4. Carlson RE. 1977. A Trophic State Index for Lakes. Limnology and Oceanography 22(2):361-369
  5. Chirico, N., D.C. Antoni, L. Pozzoli, D. Marinov, A. Malag, I. Sanseverino, A. Beghi, P. Genoni, S. Dobricic, and T. Lettieri. 2020. Cyanobacterial blooms in lake varese : analysis and characterization over ten years of observations. Water 12: 675. doi: 10.3390/w12030675
  6. Ekere, NR., J.N. Ihedioha, and A. Aiyehirue. 2015. Assessment of the levels of phosphates in detergents samples synthesis of potash alum from waste aluminum foil and aluminum scrap. Int. J. Chem. Sci, 12(4): 1145–52. ISSN0972-768x
  7. El-serehy, HA, H.S. Abdallah, F.A. Al-misned, S.A. Al-farraj, K.A. Al-rasheid. 2018. Assessing water quality and classifying trophic status for scientifically based managing the water resources of the lake timsah , the lake with salinity stratification along the suez canal. Saudi Journal of Biological Sciences 25 (7): 1247–56. https://doi.org/10.1016/j.sjbs.2018.05.022
  8. Filstrup, CT and A. Downing. 2017. Relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes relationship of chlorophyll to phosphorus and nitrogen in nutrient-rich lakes. Inland Waters 7 (4): 385–400. https://doi.org/10.1080/20442041.2017.1375176
  9. Gunes, K. 2008. Point and nonpoint sources of nutrients to lakes – ecotechnological measures and mitigation methodologies – case study. ecological engineering 4: 116–26. https://doi.org/10.1016/j.ecoleng.2008.07.004
  10. Putri, FDM., E. WIdyastuti, and C. Hristiani. 2008. Hubungan perbandingan total nitrogen dan total fosfor dengan kelimpahan chrysophyta di perairan. Scripta Biologica. 1(1):96-101. http://scri.bio.unsoed.ac.id
  11. Kementerian Lingkungan Hidup. 2009. Daya tampung beban pencemaran air danau dan/atau waduk. Jakarta. 15 hal
  12. Lukman, I. Setyobudiandi, I. Muchsin, and S. Hariyadi. 2015. Impact of cage aquaculture on water quality condition in lake maninjau, west sumatera indonesia. IJSBAR 23(1):120–137.ISSN 2307-4531
  13. Lv, J., H. Wu, and M. Chen. 2011. Effects of Nitrogen and Phosphorus on Phytoplankton Composition and Biomass in 15 Subtropical, Urban Shallow Lakes in Wuhan, China. Limno Logica 41(1): 48–56. https://doi.org/10.1016/j.limno.2010.03.003
  14. Machbub, B. 2010. Model perhitungan daya tampung beban pencemaran air. 129–44
  15. Mahmudi, M., E.D. Lusiana, S. Arsad, N.R. Buwono, A. Darmawan, T. Nisya, and G.A. Gurinda. 2019. A study on phosphorus-based carrying capacity and trophic status index of floating net cages area in Ranu Grati, Indonesia. Bioflux. 12 (5): 1902–1908. http://www.biofux.com.ro/aacl
  16. Mazón, MJ., M.A. Piedecausa, M.D. Hernández, and B. García. 2007. Evaluation of environmental nitrogen and phosphorus contributions as a result of intensive ongrowing of common octopus (Octopus Vulgaris). Aquaculture 35: 226-266 https://doi.org/10.1016/j.aquaculture.2007.01.001
  17. Mhlanga, L., W. Mhlanga, and P. Mwera. 2013. The application of a phosphorus mass balance model for estimating the carrying capacity of Lake Kariba. Tubitak 37: 316–19. https://doi.org/10.3906/vet-1110-37
  18. Morris, J., and Prime. 2015. Marine cage culture & the environment. https://doi.org/10.13140/RG.2.1.2382.9841
  19. Neto, RM dan A. Ostrensky. 2015. Nutrient load estimation in the waste of nile tilapia Oreochromis Niloticus reared in cages in tropical climate conditions. Aquaculture: 1309–1322. https://doi.org/10.1111/are.12280
  20. Nguyen, D. 2014. Cobia cage culture distribution mapping and carrying capacity assessment in Phu Quoc , Ken Giang Province. J.Viet. Env. 4(1) : 12-19. ISSN 2193-6471
  21. Nomosatryo, S and C. Henny . 2016. Changes in water quality and trophic status associated with cage aquaculture in Lake Maninjau, Indonesia. IOP Earth and Environmental Science. https://doi.org/10.1088/1755-1315/31/1/012027
  22. Oakley, Josh. 2014. Modeling the aquaculture carrying capacity of Lake Toba, North Sumatra, Indonesia (Thesis). University of Rhode Island. 1–35 p
  23. Peraturan Daerah Kabupaten Agam. 2014. Pengelolaan kelestarian kawasan danau maninjau. Agam. 27 hal
  24. Dolman, AM, J. Rucker, F.R. Pick, J. Fastner, T. Rochlark, U. Miscke, and C. Wiedner. 2012. Cyanobacteria and cyanotoxins :the influence of nitrogen versus phosphorus. Plos one 7(6):1-14 https://doi.org/10.1371/journal.pone.0038757
  25. Quinatto, J., N.L.D. Zambelli, D.H. Souza, J.T. Cardoso, and E. Skoronski. 2018. Using the pollutant load concept to assess water quality in an urban river : the case of Carahá River. An Interdisciplanary Journal of Applied Sciences 14 (1) : 1-9. A. https://doi.org/10.4136/1980-993X
  26. Rathore, SS., P. Chandravanshi, A. Chandravanshi, and K. Jaiswal. 2016. Eutrophication: impacts of excess nutrient inputs on aquatic ecosystem. IOSR. 9 (10): 89–96. https://doi.org/10.9790/2380-0910018996
  27. Standar Nasional Indonesia. 2008. Metoda Pengambilan Contoh Air Permukaan. Jakarta. 23 hal
  28. Sulastri, C. Henny, dan S. Nomosatryo. 2019. Keanekaragaman fitoplankton dan status trofik perairan danau maninjau di Sumatera Barat, Indonesia. Pros Sem Nas Masc Biodiv Indon 5(2):242–50. https://doi.org/10.13057/psnmbi/m050217
  29. Suwarno, D. 2013. Potensi dan masalah sampah di jawa tengah. Simposium Nasional. 1–9. ISSN 1412-9612
  30. Syandri, Hafrijal, dan A. Mardiah. 2018. nitrogen and phosphorus waste production from different fish species cultured at floating net cages in Lake Maninjau, Indonesia. Asian Journal of Scientific Research 2: 287–94. https://doi.org/10.3923/ajsr.2018.287.294
  31. Vanni MJ. 2014. in f reshwater ecosystems. https://doi.org/10.1146/annurev.ecolsys.33.010802.150519
  32. Vinnerås, B. 2001. Faecal separation and urine diversion for nutrient management of household biodegradable waste and wastewater. SLU. ISSN 00283-0086

Last update:

No citation recorded.

Last update:

No citation recorded.