skip to main content

Ammonia and Methanol as Energy Carriers Towards 2060 The Long-Term Plan Strategy: A Comparative Perspective of China and Indonesia Cases

1Environmental Science School, Indonesia University, Indonesia

2Coordinating Ministry for Economic Affairs of the Republic of Indonesia, Indonesia

Received: 5 Oct 2021; Revised: 19 Nov 2021; Accepted: 28 Nov 2021; Available online: 3 Dec 2021; Published: 1 Jan 2022.
Editor(s): H. Hadiyanto

Citation Format:
Abstract

The objective of this paper was to review China’s long-term carbon neutral 2060 policy and to compare with Indonesia’s case in term of energy carriers such as Ammonia and Methanol. Topics regarding China and Indonesia's long-term carbon neutral 2060 policy and strategy are important to be discussed because it will open up issues related to the role of primary energy, chemical-energy nexus and the blue energy economy supported by technology innovation, and political will. The energy-chemical nexus on the background of the Ammonia & Methanol industries are the largest sources of CO2 emissions in China, so it will contribute significantly to emission reductions from the energy transition to carbon neutral energy. From the efforts made by China, it can provide information and considerations to Indonesian policy makers and researchers on their efforts regarding resource management optimization to reconcile the tradeoffs on resources protection and development of socioeconomic as well as to ensure a sustainable system.

ABSTRAK

Tujuan dari makalah ini adalah untuk meninjau kebijakan netral karbon jangka panjang Tiongkok 2060 dan membandingkan dengan kasus Indonesia dalam hal pembawa energi seperti Amoniak dan Metanol. Topik mengenai kebijakan dan strategi jangka panjang karbon netral 2060 Tiongkok dan Indonesia penting untuk dibahas karena akan mengangkat isu terkait peran energi primer, perhubungan energi kimia dan ekonomi energi biru yang didukung oleh inovasi teknologi, dan kemauan politik. Hubungan energi-kimia di latarbelakangi industri Amoniak & Metanol adalah sumber emisi CO2 terbesar di Tiongkok, sehingga akan berkontribusi signifikan terhadap pengurangan emisi dari transisi energi ke energi netral karbon. Dari upaya yang dilakukan oleh Tiongkok, dapat memberikan informasi dan pertimbangan kepada pembuat kebijakan dan peneliti Indonesia tentang upaya mereka mengenai optimalisasi pengelolaan sumber daya untuk mempertemukan timbal balik perlindungan sumber daya dan pengembangan sosial ekonomi serta untuk memastikan sistem yang berkelanjutan.

Fulltext View|Download
Keywords: carbon neutral; Methanol; Ammonia; blue energy economy; energy-chemical nexus
Funding: Sekolah Ilmu Lingkungan Universitas Indonesia

Article Metrics:

  1. Budinis, S., Krevor, S., Dowell, N.M., Brandon, N., & Hawkes, A. (2018). An assessment of CCS costs, barriers and potential. Energy Strategy Reviews, 22, 61-81
  2. BPS. (2020). Ekspor dan Impor, https://www.bps.go.id/exim, accessed 12nd September 2021, 23.00 WIT
  3. British Petroleum. (2020). Statistical Review of World Energy 2020, 69th edition. https://www.bp.com › global › pdfs › statistical-review, 12nd September 2021, 22.25 WIT
  4. Caineng, Z., Bo, X., Huaqing, X., Dewen, Z., Zhixin, G., Ying, W., Luyang, J., Songqi, P., & Songtao, W. (2021). The role of new energy in carbon neutral. Petroleum Exploration and Development, 48, 480-491
  5. Carlson, D., Robinson, S., Blair, C., & McDonough, M. (2021). China’s climate ambition: Revisiting its First Nationally Determined Contribution and centering a just transition to clean energy. Energy Policy, 155, 112350
  6. Carbon Recycling International. (2019). Agreement Signed for CRI’s First CO2-To-Methanol Plant in China. https://www.carbonrecycling.is/news-media/co2-tomethanol-plant-china, accesed 11th September 2021, 21.45 WIT
  7. CNBC Indonesia. (2020). Impor LPG Melesat, Ternyata Produksinya Pun Separuh Kapasitas. https://www.cnbcindonesia.com/news/20201110172438-4-200817/impor-lpg-melesat-ternyata-produksinya-pun-separuh-kapasitas, accessed 11th September 2021, 22.45 WIT
  8. Galán-Martín, A., Pozo, C., Azapagic, A., Grossmann, I.E., Mac Dowell, N., & Guille´ n-Gosa´ lbez, G. (2018). Time for global action: an optimised cooperative approach towards effective climate change mitigation. Energy & Environmental Science, I-3
  9. Graves, C., Ebbesen, S.D., Mogensen, M., & Lackner, K.S. (2011). Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy. Renewable and Sustainable Energy Reviews, 15, 1-23
  10. Global Status Report of CCS. (2020). https://www.globalccsinstitute.com/resources/global-status-report/, accessed 10th September 2021, 22.23 WIT
  11. Goeppert, A., Czaun, M., Jones, J.P., Prakash, K.S., & Olah, G.A. (2014). Recycling carbon dioxide to methanol and derived products-closing the loop. The Royal Society of Chemistry
  12. Han, S.C., H., Long, R., & Cui, X. (2018). Peak coal in China: a literature review. Resources, Conservation and Recycle
  13. He, J., Li, Z., Zhang, X., Wang H., Dong W.C., Shiyang, O., Xunmin, S., Guo, T., Zhiyu, G., Alun, T., Fei, Y., Xiu, C., Siyuan, Y., Mintao, Y., Zhiyi, Z., Li, & Zhao, X. (2021). Comprehensive report on China’s Long-Term Low-Carbon Development Strategies and Pathways. Chinese Journal of Population, Resources and Environment, 18, 263-295
  14. Höhne, N., Elzen, M.D., & Escalante, D. (2014). Regional GHG reduction targets based on effort sharing: a comparison of studies. Climate Policy, 14:1, 122-147
  15. Huang, Q. (2020). Insights for global energy interconnection from China renewable energy development. Global Energy Interconnection, 3, 1-11
  16. Indonesia LTS-LCCR 2050. (2021). Indonesia Long-Term Strategy for Low Carbon and Climate Resilience 2050. https://unfccc.int/Indonesia_LTS-LCCR_2021, accessed 12th September 2021, 22.34 WIT
  17. International Energy Agency (2019). Exploring Clean Energy pathways, The role of CO2 storage. https://www.iea.org/reports/the-role-of-co2-storage, accessed 11th September 2021, 22.00 WIT
  18. IPCC. (2018). Special Report on Global Warming of 1.5°C. Cambridge University Press, UK
  19. IRENA. (2020). Innovation Outlook, Renewable Methanol. International Renewable Energy Agency, Abu Dhabi in partnership with Methanol Institute
  20. IRENA. (2019). Advanced biofuels. What holds them back? International Renewable Energy Agency, Abu Dhabi
  21. Irsyam, M., Cummins, P.R., M Asrurifak, Faizal, L.N., DH, Widiyantoro, Sri, Meilano, Irwan, Triyoso, Wahyu, Rudiyanto, Ariska, Hidayati, S., M Ridwan, Hanifa, N.R., & Syahbana, A.J. (2020). Development of the 2017 national seismic hazard maps of Indonesia. Earthquake Spectra, I-25
  22. ITB. (2021). ITB Signed MoU of Emission Absorption Technology with PT PAU and Mitsubishi Corp. https://www.itb.ac.id/news/read/57812/home/itb-signed-mou-of-emission-absorption-technology-with-pt-pau-and-mitsubishi-corp, accessed 10th September 2021, 22.00 WIT
  23. Jia, Z., & Lin, B. (2021). How to achieve the first step of the carbon-neutrality 2060 target in China: The coal substitution perspective. Energy, 233, 121179
  24. Kadir, W.G.A. (2020, February). Indonesian CCS/CCUS: Past, present and future activities. https://ccs-coe.fttm.itb.ac.id/presentation/, accessed 10th September 2021, 22.15 WIT
  25. MoI. (2021, September). Supply Demand dan Program Substitusi Impor. Directorate of Upstream Chemical Industry, Ministry of Industry Republic of Indonesia
  26. KMI. (2019). PT Kaltim Methanol Industri – A regional benchmark of Methanol-
  27. KMI. (2020). Annual Production Report
  28. Li, Chengjiang, Negnevitsky, Wang, Xiaolin, 2019. Review of methanol vehicle policies in China: curent status and future implications
  29. Li, Y., Lan, S., Ryberg, M., Ramirez, JP, & Wang, X. (2021). A quantitative roadmap for China towards carbon neutrality in 2060 using methanol and ammonia as energy carriers. iScience, 24
  30. Li, Y., Lan, S., Ramirez, J.P., & Wang, X. (2021). Achieving a low-carbon future through the energy-chemical nexus in China. Sustainable Energy Fuels, 4, 6141-6155
  31. Magda, R., & Toth, J. (2019). The connection of the methanol economy to the concept of the circular economy and its impact on sustainability. Visegrad Journal of Bioeconomy and Sustainable Development, 8. 58-62
  32. Marbun, BTH, Prasetyo, DE, Prabowo, H, Susilo D, Firmansyah, FR, Palilu, JM, Silamba IC, Santoso, D, Kadir, WGA, Sule, R, Kardani, I, Saprudin, & W, Andhika, B. (2019). Well integrity evaluation prior to converting a conventional gas well to CO2 injector well – Gundih CCS pilot project in Indonesia (phase 1). International Journal of Greenhouse Gas Control, 88, 447-459
  33. Myllyvirta, Zhang, & Shen, 2020. Will China Build Hundreds of New Coal Plants in the 2020s? https://www.carbonbrief.org/analysis-will-china-build-hundreds-of-new-coal-plants-in-the-2020s, accessed 9th September 2021, 21.15 WIT
  34. Nami, M. (2015). Modelling the Prospects and Impacts of Methanol Use in Transportation in China at Computable General Equilibrium. Massachusetts Institute of Technology
  35. Olah, G. A.., Goeppert, A., & Prakash, G.K.S. (2018). Beyond Oil and Gas: The Methanol Economy, 3rd ed., Wiley-VCH, Weinheim, Germany
  36. Paris Agreement. (2015). https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement, accessed 13rd September 2021, 06.12 WIT
  37. Padros, C.V. & Johnson, G.A. (2020). Rapid Techniques in Qualitative Research: A Critical Review of the Literature, Qual. Health Res., vol. 30, no. 10, pp. 1596–1604
  38. Pupuk Indonesia. (2020). Agrosolution for Indonesia, Annual Report 2020. https://www.pupuk-indonesia.com/id/laporan, accessed 11th September 2021, 22.30 WIT
  39. Ren, X., Dong, L., Xu, D., & Hu, B. (2020). Challenges towards hydrogen economy in China. International Journal of Hydrogen Energy, 45, 3426-34345
  40. Sánchez, A., Castellano, E., Martin, M., & Vega, P. (2021). Evaluating ammonia as green fuel for power generation: A thermo-chemical perspective. Applied Energy, 293, 116956
  41. Schröder, J., Winther, K., Muller-Langer, F., Baumgarten, W., Aakko-Saksa, P., & Lindgren, M. (2020). Methanol as motor fuel, summary report, Annex 56, a report from the Advanced Motor Fuels Technology Collaboration Programme. https://www.iea-amf.org/, accessed 10th September 2021, 23.00 WIT
  42. SGS. (2020). Methanol: Properties and Uses. SGS INSPIRE Team. https://3xxngg2wmai7100rss2cgkmjwpengine.netdnassl.com/wpcontent/uploads/2020/03/SGSINSPIRE-Methanol-Properties-and-Uses.pdf, accessed 10th September 2021, 21.30 WIT
  43. Singh, R., Singh, M., & Gautam, S. (2021). Hydrogen economy, energy, and liquid organic carriers for its mobility. Materials Today: Proceedings, 46, 5420-5427
  44. Statista. (2020). Global Production Capacity of Methanol 2018-2030. https://www.statista.com/statistics/1065891/global-methanol-productioncapacity/, accessed 10th September 2021, 21.00 WIT
  45. Tricco, A.C., Langlois, E.V., & Straus, S.E. (2017). Rapid reviews to strengthen health policy and systems: a practical guide. WHO
  46. Tritto, Angela. (2021). China’s Belt and Road Initiative: from perceptions to realities in Indonesia’s coal power sector. Energy Strategy Reviews, 34, 100624
  47. UNEP (2019). Emissions Gap Report 2019. United Nations Environment Programme: Nairobi, pp. 1–81
  48. USGS (2020). Nitrogen Data Sheet – Mineral Commodity Summaries 2020
  49. Wang, J.W., Kang, J.N., Liu, L.C., & Wei, Y.M. (2020). Research trends in carbon capture and storage: A comparison of China with Canada. International Journal of Greenhouse Gas Control, 97, 103018
  50. Wang, L., Xia, M., Wang, H., Huang, K., Qian, C., Maravelias, C.T., & Ozin, G.A. (2018a.). Greening Ammonia toward the Solar Ammonia Refinery. Joule, 2, 1055–1074
  51. Wang, Q., Li, S., & Li, R. (2018b). China’s dependency on foreign oil will exceed 80% by 2030: developing a novel NMGM-ARIMA to forecast China’s foreign oil dependence from two dimensions. Energy, 163, 151–167
  52. Xiang, Dong, Li, Peng, Yuan, Xiaoyou, Cao, Huiju, Liu, Lingchen, & Liu, Yuxin. (2021). Energy consumption and greenhouse gas emissions of shale gas chemical looping reforming process integrated with coal gasification for methanol production. Applied Thermal Engineering, 193, 116990
  53. Xie, K., Li, W., & Zhao, W. (2010). Coal chemical industry and its sustainable development in China. Energy, 35, 4349-4355
  54. Xu, X., Liu, Y., Zhang, F., Di, W., & Zhang, Y. (2017). Clean coal technologies in China based on methanol platform. Catalysis Today
  55. Yang, C.J, & Jackson, RB. (2012). China’s growing methanol economy and its implications for energy and the environment. Energy Policy, 41, 878-884
  56. Yao, Y., Chang, Y., Huang, R., Zhang, L., & Masanet, E. (2018). Environmental implications of the methanol economy in China: well-to-wheel comparison of energy and environmental emissions for different methanol fuel production pathways. Journal of Cleaner Production, 172, 1381-1390
  57. Yongjun, G., Liu, J.L., & Bashir, S. (2021). Electrocatalysts for direct methanol fuel cells to demonstrate China’s renewable energy renewable portfolio standards within the framework of the 13th five-year plan. Catalysis Today, 374, 135-153
  58. Zhao, G., Yu, B., An, R., Wu, Y., & Zhao, Z. (2021). Energy system transformation and carbon emission mitigation for China to achieve global 2°C climate target. Journal of Environmental Management, 292, 112721
  59. Zhili, D., Boqiang, L., & Chunxu, G., (2019). Development path of electric vehicles in China under environmental and energy security constraints. Resources, Conservation & Recycling, 143, 17-26
  60. Zhou, S., Tong, Q., Pan, X., Cao, M., Wang, H.G., Ji, & Ou, X. (2021). Research on low-carbon energy transformation of China necessary to achieve the Paris agreement goals: A global perspective. Energy Economics, 95, 105137

Last update:

No citation recorded.

Last update: 2025-01-21 10:34:13

No citation recorded.