skip to main content

Pemetaan Zona Kerentanan Airtanah Pesisir Formasi Batugamping Terhadap Pencemaran Nitrat Di Kecamatan Sepulu Madura

1Palawa Karya Yogyakarta, Indonesia

2Program Studi Geografi dan Ilmu Lingkungan, Fakultas Geografi, Universitas Gadjah Mada, Indonesia

3Program Studi Teknik Lingkungan, Fakultas Teknik Sipil dan Perencanaan, Universitas Islam Indonesia, Indonesia

4 Laboratorium Analisis Risiko Lingkungan, Program Studi Teknik Lingkungan, Universitas Islam Indonesia, Indonesia

View all affiliations
Received: 6 Dec 2021; Revised: 23 Dec 2021; Accepted: 30 Dec 2022; Available online: 6 Jan 2022; Published: 3 Apr 2022.
Editor(s): H. Hadiyanto

Citation Format:
Abstract

Fomasi litologi akuifer batugamping mempunyai karakteristik media aliran berupa celah, rekahan, dan lorong pelarutan, sehingga memiliki potensi mengalirkan airtanah dengan kecepatan tinggi. Produktivitas yang tinggi ini mengakibatkan sumber pencemar di permukaan dapat dengan cepat meresap ke sistem akuifer dan bercampur dengan airtanah; kondisi inilah yang memicu kerentanan tinggi. Salah satu langkah pengelolaan airtanah pesisir adalah penentuan zona kerentanan airtanah terhadap pencemaran. Dengan demikian, tujuan penelitian ini adalah untuk mengetahui tingkat kerentanan airtanah pesisir terhadap pencemaran di formasi batugamping menggunakan metode COP dengan pendekatan intrinsik dan metode EPIK dengan pendekatan perkembangan karst. Hasil penilaian menggunakan kedua metode tersebut menunjukkan tingkat kerentanan rendah hingga sangat tinggi. Pemetaan metode COP menghasilkan dua kelas kerentanan: rendah (95% dari luas wilayah) dan sedang (4%), sedangkan metode EPIK menghasilkan zona indeks kerentanan yang lebih panjang dengan empat kelas kerentanan, yaitu rendah (1,23%), sedang (17,82%), tinggi (17,82%), dan sangat tinggi (21,65%). Dibandingkan dengan COP, EPIK menghasilkan kelas kerentanan yang lebih tinggi karena pengaruh koefisien pembobot pada formula penghitungannya. Hasil penilaian kerentanan divalidasi dengan indikator limbah domestik berupa senyawa nitrat (NO3). Uji laboratorium menunjukkan kandungan nitrat (NO3) airtanah yang bervariasi dari 0,12 mg/l (terendah) hingga 9,80 mg/l (tertinggi). Variasi ini masih berada di bawah baku mutu air minum tetapi di atas baku mutu air limbah domestik atau melebihi kadar nitrat di alam. Berdasarkan hasil validasi, zona kerentanan berkorelasi dengan kandungan nitrat (NO3). Pada zona kerentanan yang tinggi, ditemukan kadar nitrat yang tinggi pula.

ABSTRACT

A limestone aquifer is lithologically characterized by three flow media: fissures, fractures, and dissolution channels, thus creating the potential to drain groundwater at a high rate. This high productivity, however, means that the groundwater is highly vulnerable to pollution. If a pollutant source is present on the surface, it can quickly seep into and mix with the subsurface system. Among the widely proposed management strategies is groundwater vulnerability zoning. This study was intended to determine the degrees of coastal groundwater vulnerability to pollution in a limestone formation with two methods: COP intrinsic vulnerability) and EPIK (karst development-based vulnerability). The assessment results showed that the vulnerability produced with both methods varied from low to very high. In the mapping, COP produced two levels: low (95% of the total area) and medium (4%), while EPIK generated a longer vulnerability index zone with four levels: low (1.23%), medium (17.82%), high (17.82%), and very high (21.65%). Compared to COP, EPIK results in a higher vulnerability class due to the weighting values in its vulnerability assessment. The results were validated with a domestic waste indicator: the presence of nitrate (NO3). Laboratory tests showed NO3 concentrations in the range 0.12 of 9.80 mg/l. These figures are still below the quality standard for drinking water but above that of domestic wastes or exceeding the maximum NO3 content found in nature. The validation revealed that the vulnerability zone is correlated with NO3 levels: the higher the vulnerability class of the zone, the higher the nitrate content.

Fulltext View|Download
Keywords: Batugamping; COP; EPIK; karst; kerentanan; nitrat
Funding: Universitas Gajah Mada; PT. Pertamina Hulu Energi West Madura Offshore (PHE WHO)

Article Metrics:

  1. Abdelmadjid, B., and S. Omar. 2013. “Assessment of Groundwater Pollution by Nitrates Using Intrinsic Vulnerability Methods: A Case Study of the Nil Valley Groundwater (Jijel, North-East Algeria).” African Journal of Environmental Science and Technology 7(10):949–60
  2. Aller, L., T. Bennett, J. H. Lehr, R. J. Petty, and G. Hackett. 1987. DRASTIC; a Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. United States: United States Environmental Protection Agency
  3. Amil, Ayşenur, Pınar Avcı, Ahmet Çil, Ayşe Muhammetoğlu, and Naciye Nur Özyurt. 2020. “Significance of Validation for Karst Aquifers’ Vulnerability Assessments: Antalya Travertine Plateau (Turkey) Application.” Journal of Contaminant Hydrology 228:103557. doi: 10.1016/j.jconhyd.2019.103557
  4. Bastani, Mehrdad, and Thomas Harter. 2019. “Source Area Management Practices as Remediation Tool to Address Groundwater Nitrate Pollution in Drinking Supply Wells.” Journal of Contaminant Hydrology 226:103521. doi: 10.1016/j.jconhyd.2019.103521
  5. BIG. 2018a. DEMNas 1609-12 (Sepulu) & DEMNas 1609-21 (Tanjungbumi). Bogor, Indonesia: Badan Informasi Geospasial (BIG)
  6. BIG. 2018b. Rupa Bumi Indonesia Kabupaten Bangkalan 1:25.000. Bogor, Indonesia: Badan Informasi Geospasial (BIG)
  7. BSN. 2002. Standar Nasional Indonesia No. 19-6728.1-2002 Penyusunan Neraca Sumber Daya - Bagian 1: Sumber Daya Air Spasial. Badan Standardisasi Nasional. Vol. ICS 13.060. Jakarta, Indonesia, Indonesia: Badan Standardisasi Nasional (BSN)
  8. Dausse, Amélie, Véronique Leonardi, and Hervé Jourde. 2019. “Journal of Hydrology : Regional Studies Hydraulic Characterization and Identification of Flow-Bearing Structures Based on Multi-Scale Investigations Applied to the Lez Karst Aquifer.” Journal of Hydrology: Regional Studies 26(November):100627. doi: 10.1016/j.ejrh.2019.100627
  9. Doerfliger, N., P. Y. Jeannin, and F. Zwahlen. 1999. “Water Vulnerability Assessment in Karst Environments: A New Method of Defining Protection Areas Using a Multi-Attribute Approach and GIS Tools (EPIK Method).” Environmental Geology 39(2):165–76. doi: 10.1007/s002540050446
  10. Dorfliger, N., and F. Zwahlen. 1998. “Practical Guide - Groundwater Vulnerability Mapping in Karstic Regions (EPIK).” Swiss Agency for the Environment, Forests and Landscape (SAEFL), Bern, 56
  11. Doummar, Joanna, Armin Margane, Tobias Geyer, and Martin Sauter. 2012. Vulnerabiity Mapping Using the COP and EPIK Methods. Special Re. Goettingen: University of Goettingen
  12. Elsayed Gabr, Mohamed, Hoda Soussa, and Ehab Fattouh. 2020. “Groundwater Quality Evaluation for Drinking and Irrigation Uses in Dayrout City Upper Egypt.” Ain Shams Engineering Journal. doi: 10.1016/j.asej.2020.05.010
  13. ESDM. 2018. Cekungan Air Tanah (CAT). Jakarta: Kementerian Energi dan Sumber Daya Mineral
  14. Febriarta, E., M. A. Marfai, D. R. Hizbaron, and A. Larasati. 2020. “Kajian Spasial Multi Kriteria DRASTIC Kerentanan Air Tanah Pesisir Akuifer Batugamping Di Tanjungbumi Madura.” Jurnal Ilmu Lingkungan 18(3):476–87. doi: 10.14710/jil.18.3.476-487
  15. Febriarta, Erik, and Ajeng Larasati. 2020. “Karakteristik Akuifer Air Tanah Dangkal Di Endapan Muda Merapi Yogyakarta.” Jurnal Sains Dan Teknologi Lingkungan 12(2):84–99. doi: https://doi.org/10.20885/jstl.vol12.iss2.art1
  16. Febriarta, Erik, and Widiyana Riasasi. 2019. “Karakteristik Kualitas Air Embung Tambakboyo Di Kabupaten Sleman Yogyakarta.” Seminar Nasional Pengelolaan Pesisir Dan Daerah Aliran Sungai Ke-5 5:117–23
  17. Gaikwad, Satyajit K., Ajaykumar K. Kadam, Ritish R. Ramgir, Akanksha S. Kashikar, Vasant M. Wagh, Avinash M. Kandekar, Suryakant P. Gaikwad, Ramdas B. Madale, Namdev J. Pawar, and Kishor D. Kamble. 2020. “HydroResearch Assessment of the Groundwater Geochemistry from a Part of West Coast of India Using Statistical Methods and Water Quality Index.” HydroResearch 3:48–60. doi: 10.1016/j.hydres.2020.04.001
  18. Goldscheider, Nico, and David Drew. 2007. Methods in Karst Hydrogeology. Vol. 53. London: Taylor & Francis Group, London
  19. Guastaldi, Enrico, Luca Graziano, Giovanni Liali, Fabio Nunzio Antonio Brogna, and Alessio Barbagli. 2014. “Intrinsic Vulnerability Assessment of Saturnia Thermal Aquifer by Means of Three Parametric Methods: SINTACS, GODS and COP.” Environmental Earth Sciences 72(8):2861–78. doi: 10.1007/s12665-014-3191-z
  20. Guettaia, Sabrine, Messaoud Hacini, Abderrezak Boudjema, Abderrezak Zahrouna, Abderrezak Boudjema, and P. Ferrão. 2017. “Vulnerability Assessment of an Aquifer in an Arid Environment and Vulnerability Assessment of an Aquifer in an Arid Environment and Comparison of the Applied Methods : Case of the Mio-Plio-Quaternary Comparison of the Applied Methods : Case of the Mio-Pli.” Energy Procedia 119:482–89. doi: 10.1016/j.egypro.2017.07.057
  21. Harter, T., and L. .. G. Walker. 2001. Booklet: Assessing Vulnerability of Groundwater. California: California Departement of Health Services
  22. Hosseini, M., and A. Saremi. 2018. “Assessment and Estimating Groundwater Vulnerability to Pollution Using a Modified DRASTIC and GODS Models (Case Study: Malayer Plain of Iran).” Civil Engineering Journal 42(2):433–422
  23. Kalhor, Koosha, Reza Ghasemizadeh, Ljiljana Rajic, and Akram Alshawabkeh. 2019. “Assessment of Groundwater Quality and Remediation in Karst Aquifers: A Review.” Groundwater for Sustainable Development 8:104–21. doi: 10.1016/j.gsd.2018.10.004
  24. KESDM. 2012. Geologi. Jakarta: Kementerian Energi dan Sumber Daya Mineral
  25. KESDM. 2015a. Litologi Akuifer. Jakarta: Kementerian Energi dan Sumber Daya Mineral
  26. KESDM. 2015b. Produktivitas Akuifer. Jakarta: Kementerian Energi dan Sumber Daya Mineral
  27. KESDM. 2018. Kawasan Bentang Alam Karst (KBAK). Jakarta, Indonesia: Kementerian Energi dan Sumber Daya Mineral
  28. Marfai, Muh Aris, Erik Febriarta, Bayu Argadyanto Prabawa, and Fredi Satya Candra Rosaji. 2019. Rencana Pemenuhan Kuantitas Dan Kualitas Air Desa Bandangdaja, Tanjungbumi Bangkalan Madura. Laporan Ak. Yogyakarta, Indonesia: Pertamina Hulu Energi West Madura Offshore (PHE WHO) dan Universitas Gadjah Mada
  29. Murali, R. Mani, Ankita M., and Vethamony P. 2018. “A New Insight to Vulnerability of Central Odisha Coast, India Using Analytical Hierarchical Process (AHP) Based Approach.” Journal of Coastal Conservation 22(4):799–819. doi: 10.1007/s11852-018-0610-4
  30. Permen ESDM. 2012. Peraturan Menteri ESDM No. 17 Tahun 2012 Tentang Penetapan Kawasan Bentang Karst. Jakarta, Indonesia: Menteri Energi dan Sumber Daya Mineral
  31. PermenESDM. 2017. Peraturan Menteri Energi Dan Sumber Daya Mineral No.2 Tahun 2017 Tentang Cekungan Air Tanah Di Indonesia. Jakarta, Indonesia: Menteri Energi dan Sumber Daya Mineral
  32. PermenKes. 2017. Baku Mutu Kesehatan Lingkungan Dan Persyaratan Kesehatan Air Untuk Keperluan Hygiene Sanitasi, Kolam Renang, Slous Per Aqua, Dan Pemandian Umum Nomor 32 Tahun 2017. Jakarta, Indonesia: Peraturan Menteri Kesehatan (PermenKes)
  33. PSDA. 2018. Nitrat/Nitrit (N02). Jawa Tengah: Balai Pekerjaan Umum Sumber Daya Air (PSDA) dan Penataan Ruang Bodri Kuto Jawa Tengah
  34. PUPR. 2016. Penyusunan Rencana Induk Sistem Pelayanan Air Minum (RI-SPAM) Kabupaten Maluku Tenggara Barat. Maluku Tenggara Barat: Direktorat Jendral Cipta Karya Kementerian Pekerjaan Umum dan Permukiman Rakyat
  35. Purnama, Setyawan, and Ahmad Cahyadi. 2019. “Groundwater Vulnerability to Pollution in Kasihan District, Bantul Regency, Indonesia.” Forum Geografi 33(2):140–52. doi: 10.23917/forgeo.v33i2.7672
  36. Purnama, Setyawan, Tommy Ardian Tivianton, Achmad Cahyadi, and Erik Febriarta. 2019. “Kajian Daerah Imbuhan Airtanah Di Kabupaten Ngawi.” Kajian Daerah Imbuhan Airtanah Di Kabupaten Ngawi 16(1):54–59. doi: 10.15294/jg.v16i1.18358
  37. Putranto, Thomas Triadi. 2019. “Studi Kerentanan Airtanah Terhadap Pencemaran Dengan Menggunakan Metode Drastic Pada Cekungan Airtanah (CAT) Karanganyar-Boyolali, Provinsi Jawa Tengah.” Jurnal Ilmu Lingkungan 17(1):159. doi: 10.14710/jil.17.1.159-171
  38. Putranto, Thomas Triadi, and Thomas Rüde. 2016. “Hydrogeological Model of an Urban City in a Coastal Area, Case Study: Semarang, Indonesia.” Indonesian Journal on Geoscience 3(1). doi: 10.17014/ijog.3.1.17-27
  39. Putranto, Thomas Triadi, Tri Winarno, and Axel Prima Agita Susanta. 2020. “Risk Assessment of Groundwater Abstraction Vulnerability Using Spatial Analysis: Case Study at Salatiga Groundwater Basin, Indonesia.” Indonesian Journal on Geoscience 7(2). doi: 10.17014/ijog.7.2.215-224
  40. Singhal, B. B. .., and R. .. Gupta. 2010. Applied Hydogeology of Fracture Rock. London: Springer Dordrecht Heidelberg London
  41. Sisultan. 2017. Peta Tanah Skala 1:50.000. Jakarta, Indonesia: Kementerian Pertanian
  42. Supandjono, J. B., K. Hasan, H. Panggabean, D. Satria, and Sukardi. 1992. Peta Geologi Lembar Surabaya Dan Sapulu, Jawa. Bandung, Indonesia: Pusat Penelitian dan Pengembangan Geolog
  43. Thapa, R., S. Gupta, S. Guin, and H. Kaur. 2018. “Sensitivity Analysis and Mapping the Potential Groundwater Vurnerability Zones in Birbhum District, India: A Comparative Approach between Vurnerability Models.” Water Science 32:44–66
  44. Thapa, Raju, Srimanta Gupta, Harjeet Kaur, and Raju Baski. 2019. “Assessment of Groundwater Quality Scenario in Respect of Fluoride and Nitrate Contamination in and around Gharbar Village, Jharkhand, India.” HydroResearch 2:60–68. doi: 10.1016/j.hydres.2019.09.002
  45. Todd, D. K., and L. W. Mays. 2005. Groundwater Hydrology. 3rd ed. Denver: John Wiley & Sons, Inc
  46. Vías, J. M., B. Andreo, M. J. Perles, Fulvio Carrasco, Inaki Vadillo, and P. Jiménez. 2006. “Proposed Method for Groundwater Vulnerability Mapping in Carbonate (Karstic) Aquifers: The COP Method.” Hydrogeology Journal 14(6):912–25. doi: 10.1007/s10040-006-0023-6
  47. Voutchkova, Denitza D., Jörg Schullehner, Per Rasmussen, and Birgitte Hansen. 2021. “A High-Resolution Nitrate Vulnerability Assessment of Sandy Aquifers (DRASTIC-N).” Journal of Environmental Management 277:111330. doi: 10.1016/j.jenvman.2020.111330
  48. Vrba, J., and A. Zaporozec. 1994. Guidebook on Mapping Groundwater Vulnerability. Hannover: International Association of Hydrogeologist
  49. Yang, Shuai, Wei-ya Ge, Hong-han Chen, and Wen-li Xu. 2019. “Investigation of Soil and Groundwater Environment in Urban Area during Post-Industrial Era: A Case Study of Brownfield in Zhenjiang, Jiangsu Province, China.” China Geology 3(4):504–14. doi: 10.31035/cg2018128

Last update:

No citation recorded.

Last update: 2024-11-21 20:20:46

No citation recorded.