skip to main content

Model Parameter Kinetika Biologis Proses Lumpur Aktif Air Limbah Kertas Berdasarkan Variasi Waktu Detensi Pada Kondisi Tidak Tunak

Environmental Engineering Division, Department of Civil and Environmental Engineering, Faculty of Agricultural Engineering and Technology, IPB University., Indonesia

Received: 17 Mar 2022; Revised: 11 Jun 2022; Accepted: 30 Jul 2022; Available online: 30 Sep 2022; Published: 1 Oct 2022.
Editor(s): Budi Warsito

Citation Format:
Abstract

ABSTRAK

Sistem konvensional lumpur aktif untuk limbah cair industri kertas memanfaatkan mekanisme proses biologis oleh mikroorganisme tanpa penambahan bahan kimia. Kondisi proses pengolahan lumpur aktif sangat dinamis sehingga membutuhkan beberapa pendekatan pemodelan kinetika biologis (biokinetika) berdasarkan kondisi tidak tunak. Parameter umum biokinetika pada unit lumpur aktif meliputi laju pertumbuhan maksimum (µmax), konsentrasi setengah saturasi (Ks), koefisien produksi sintesis sel (Y), dan koefisien kematian mikroorganisme (Ke). Tujuan penelitian ini meliputi analisis kinerja unit lumpur aktif pada waktu detensi 6, 8, dan 12 jam, estimasi nilai koefisien biokinetika pada kondisi tidak tunak, serta mengetahui pengaruh nilai biokinetika untuk memprediksi kualitas efluen air limbah. Estimasi nilai biokinetika diperoleh berdasarkan variasi model non-inhibitor dan inhibitor nitrit berdasarkan Persamaan Monod, Contois, Sokol-Howell, Jerusalimski, dan Hinshelwood. Berdasarkan analisis statistik, nilai biokinetika dalam kondisi kondisi tidak tunak tanpa inhibitor nitrit untuk Ke (hari-1), Y (mgMLVSSS/mgCOD), µmax (hari-1), dan Ks (mg/L) pada HRT 6 jam  berturut-turut sebesar 0,025; 8,59; 10,0; dan 42,03 (Sokol-Howell); HRT 8 jam berturut-turut sebesar 0,145; 0,93; 60,3; dan 43,08 (Sokol-Howell); dan HRT 12 jam berturut-turut sebesar 0,708; 3,09; 2,0; dan 64,89 (Monod). Selain itu, nilai biokinetika dalam kondisi kondisi tidak tunak dengan efek inhibitor nitrit untuk Ke (hari-1), Y (mgMLVSSS/mgCOD), µmax (hari-1), dan Ks (mg/L) pada HRT 6 jam  berturut-turut sebesar 0,795; 2,26; 2,0; dan 57,57 (Jerusalimski); HRT 8 jam berturut-turut sebesar 1,96; 3,56; 3,4; dan 48,75 (Hinshelwood); dan HRT 12 jam berturut-turut sebesar 3,435; 11,62; 5,7; dan 45,02 (Hinshelwood). Nilai biokinetika ini representatif digunakan untuk aplikasi perencanaan skala lapangan, terutama untuk prediksi kualitas efluen air limbah dan desain dimensi unit pengolahan.

Kata kunci: air limbah kertas, biokinetika, lumpur aktif, waktu detensi, tidak tunak.


ABSTRACT

Activated sludge is the conventional biological unit for treating paper-mill wastewater using microorganism activities without adding some chemicals. The dynamic condition of the activated sludge requires several approaches to estimate biological kinetic (biokinetics) modelling based on unsteady conditions. General parameters of biokinetics in activated sludge units include maximum growth rate (µmax), half-saturation concentration (Ks), yield coefficient (Y), and endogenous decay coefficient (Ke). The aim of this study was to analyze the activated sludge unit performance at hydraulic retention time (HRT) of 6, 8, and 12 hours, estimate the value of the biokinetic coefficient, and obtain the affect of biokinetic values for predicting the effluent wastewater quality. Estimation of biokinetic values was obtained based on variations in the non-inhibitor and the nitrite inhibitor models based on the Monod, Contois, Sokol-Howell, Jerusalimski, and Hinshelwood equations. Based on statistical analysis, the biokinetic values in unsteady state without nitrite inhibitors for Ke (day-1), Y (mgMLVSSS/mgCOD), µmax (day-1), dan Ks (mg/L) at HRT 6 hours were 0.025; 8.59; 10.0; and 42.03 (Sokol-Howell Eq.), respectively; at HRT 8 hours 0.145; 0.93; 60.3; and 43.08 (Sokol-Howell Eq.), respectively; at HRT 12 hours were 0.708; 3.09; 2.0; and 64.89 (Monod Eq.), respectively. In addition, the biokinetic values in unsteady conditions affecting nitrite as inhibitor for Ke (day-1), Y (mgMLVSSS/mgCOD), µmax (day-1), dan Ks (mg/L) at HRT 6 hours were 0.795; 2.26; 2.0; and 57.57 (Jerusalimski's Eq.), respectively; on HRT 8 hours of 1.96; 3.56; 3,4; and 48.75 (Hinshelwood's Eq.), respectively; on HRT 12 hours of 3,435; 11.62; 5.7; and 45.02 (Hinshelwood's Eq.), respectively. These biokinetic values representive to be used for predicting the quality of wastewater effluents and designing unit dimensions.

Keywords: activated sludge, biokinetic, paper-mill wastewater, detention time, unsteady-state.

Note: This article has supplementary file(s).

Fulltext View|Download |  Cover Letter
Cover Letter
Subject
Type Cover Letter
  Download (26KB)    Indexing metadata
 common.other
Rekomendasi Reviewer
Subject
Type Other
  Download (16KB)    Indexing metadata
Keywords: air limbah kertas, biokinetika, lumpur aktif, waktu detensi, tidak tunak

Article Metrics:

  1. Abunde NF, Asiedu N, Addo A. 2017. Dynamics of inhibition patterns during fermentation processes-Zea Mays and Sorghum Bicolor case study. Int. J. Ind. Chem. 8(1):91–99.doi: 10.1007/s40090-016-0105-9
  2. Ardian S, Ahmad A, Herman S, Program M, Teknik S, Jurusan D, Kimia T, Bioproses LT, Teknik F, Riau U. 2015. Pengaruh Waktu Tinggal Hidrolik Terhadap Penyisihan Padatan Pada Pengolahan Sludge Ipal Pulp and Paper. J. Online Mhs. FakutlasTeknik. 2(2):1–9
  3. Arnaldos M, Amerlinck Y, Rehman U, Maere T, Van Hoey S, Naessens W, Nopens I. 2015. From the affinity constant to the half-saturation index: Understanding conventional modeling concepts in novel wastewater treatment processes. Water Res. 70:458–470.doi: 10.1016/j.watres.2014.11.046
  4. Aspelin V, Ekholm J. 2017. Inhibition of Nitrification in Industrial Wastewater – Identification of Sources. Lund University
  5. Budiyono. 2001. Simulasi dan Pemodelan Proses Lumpur Aktif Tanpa Resirkulasi pada Keadaan Transien. J. Reakt. 5(1):35–40
  6. Bulan R. 2018. Pengaruh Variasi Beban Organik Pengolahan Limbah Cair Industri Tahu Menggunakan Reaktor Anaerobik. Universitas Sumatera Utara
  7. Ge S, Peng Y, Wang S, Lu C, Cao X, Zhu Y. 2012. Nitrite accumulation under constant temperature in anoxic denitrification process: The effects of carbon sources and COD/NO 3-N. Bioresour. Technol. 114:137–143. doi: 10.1016/j.biortech.2012.03.016
  8. Giraldo-Gomez E. 1991. Kinetics of anaerobic treatment: A critical review. Crit. Rev. Environ. Control. 21(5–6) :411–490.doi :10.1080/ 10643389109388424
  9. Glass C, Silverstein J, Oh J. 1997. Inhibition of denitrification in activated sludge by nitrite. Water Environ. Res. 69(6): 1086–1093.doi: 10.2175/106143097x125803
  10. Hreiz R, Latifi MA, Roche N. 2015. Optimal design and operation of activated sludge processes: State-of-the-art. Chem. Eng. J. 281: 900–920.doi: 10.1016/j.cej.2015.06.125
  11. Kurniawan A, Kwon SY, Shin JH, Hur J, Cho J. 2016. Acid fermentation process combined with post denitrification for the treatment of primary sludge and wastewater with high strength nitrate. Water (Switzerland). 8(4).doi: 10.3390/w8040117
  12. Kurniawan A, Wirasembada YC, Park KY, Kim YM, Hur J, Cho J. 2018. Estimation of biokinetic parameters in the acid fermentation of primary sludge using an anaerobic baffled reactor. Environ. Sci. Water Res. Technol. 4(12) : 1997–2011. doi: 10.1039/c8ew00566d
  13. Lan H, Zhang Hao, Qiao H, Guo C, Lv Y, Zhang Heng. 2019. Environmental impact Effects of temperature on white water treatment by the dominant bacteria. Nord. Pulp Pap. Res. J. 34(1):133–137
  14. Liu G, Wang J. 2015. Modeling effects of DO and SRT on activated sludge decay and production. Water Res. 80(October): 169–178. doi: 10.1016/j.watres.2015.04.042
  15. Metcalf, Eddy, Tchobanoglous G. 2013. Wastewater Engineering: Treatment and Resource Recovery.
  16. Ni BJ, Yu HQ. 2012. Microbial products of activated sludge in biological wastewater treatment systems: A critical review. Crit. Rev. Environ. Sci. Technol. 42(2): 187–223. doi: 10.1080/10643389.2010.507696
  17. Nogaj T, Randall A, Jimenez J, Takacs I, Bott C, Miller M, Murthy S, Wett B. 2015. Modeling of organic substrate transformation in the high-rate activated sludge process. Water Sci. Technol. 71(7):971–979.doi: 10.2166/wst.2015.051
  18. Onysko KA. 1999. Unsteady-state behaviour of an immobilized-cell fluidized-bed bioreactor for phenol biodegradation. Univeristy of Waterloo
  19. Pittoors E, Guo Y, Van Hulle SWH. 2014. Modeling Dissolved Oxygen Concentration for Optimizing Aeration Systems and Reducing Oxygen Consumption in Activated Sludge Processes: A Review. Chem. Eng. Commun. 201(8):983–1002.doi: 10.1080/00986445.2014.883974
  20. Reynolds T, Richard P. 1996. Unit Operations and Processes in Environmental Engineering
  21. Rizaluddin A, Purwati S. 2016. Potensi Selulase Dan Pengaruh Laju Pembebanan Pada Efektivitas Pengolahan Air Limbah Kertas Proses Lumpur Aktif. J. selulosa. 6(2):83–94
  22. Ruffino B, Cerutti A, Campo G, Scibilia G, Lorenzi E, Zanetti M. 2019. Improvement of energy recovery from the digestion of waste activated sludge (WAS) through intermediate treatments: The effect of the hydraulic retention time (HRT) of the first-stage digestion. Appl. Energy. 240(February):191–204.doi: 10.1016/j.apenergy.2019.02.061
  23. Safitri WR. 2016. Analisis korelasi pearson dalam menentukan hubungan antara kejadian demam berdarah dengue dengan kepadatan penduduk di kota surabaya pada tahun 2012 - 2014. J. Ilmu Kesehat. Masy. Univ. Airlangga. 2(2):21–29
  24. Said NI, Utomo K. 2018. Pengolahan Air Limbah Domestik Dengan Proses Lumpur Aktif Yang Diisi Dengan Media Bioball. J. Air Indones. 3(2):160–174.doi: 10.29122/jai.v3i2.2337
  25. Sari FR, Annissa R, Tuhuloula A. 2013. Perbandingan Limbah Dan Lumpur Aktif Terhadap Pengaruh Sistem Aerasi Pada Pengolahan Limbah Cpo. Konversi. 2(1):39
  26. Semblante GU, Hai FI, Ngo HH, Guo W, You SJ, Price WE, Nghiem LD. 2014. Sludge cycling between aerobic, anoxic and anaerobic regimes to reduce sludge production during wastewater treatment: Performance, mechanisms, and implications. Bioresour. Technol. 155:395–409.doi: 10.1016/j.biortech.2014.01.029
  27. Solon K, Volcke EIP, Spérandio M, Van Loosdrecht MCM. 2019. Resource recovery and wastewater treatment modelling. Environ. Sci. Water Res. Technol. 5(4):631–642.doi: 10.1039/c8ew00765a
  28. Sonkar M, Kumar V, Dutt D. 2020. Use of paper mill sludge and sewage sludge powder as nitrogen and phosphorus sources with bacterial consortium for the treatment of paper industry wastewater. Biocatal. Agric. Biotechnol. 30:101843.doi: 10.1016/j.bcab.2020.101843
  29. Stoychev JT, Dimitrova Lekova S, Petrov Terziyski G. 2020. Studying and Modeling of the Process Acetification. Int. J. Sci. Res. Eng. Dev. 3:421–430
  30. Stroot PG, Saikaly PE, Oerther DB. 2005. Dynamic Growth Rates of Microbial Populations in Activated Sludge Systems. J. Environ. Eng. 131(12):1698–1705.doi: 10.1061/(asce)0733-9372(2005)131:12(1698)
  31. Taufik I, Azwar ZI, Riset B, Budidaya P, Tawar A. 2009. Pengaruh perbedaan suhu air pada pemeliharaan benih ikan betutu ( Oxyeleotris marmorata Blkr ) DENGAN SISTEM RESIRKULASI. J. Ris. Akuakultur. 4(3):319–325
  32. Villain M, Marrot B. 2013. Influence of sludge retention time at constant food to microorganisms ratio on membrane bioreactor performances under stable and unstable state conditions. Bioresour. Technol. 128:134–144. doi: 10.1016/j.biortech.2012.10.108
  33. Wang ZW, Li Y. 2014. A theoretical derivation of the Contois equation for kinetic modeling of the microbial degradation of insoluble substrates. Biochem. Eng. J. 82:134–138.doi: 10.1016/j.bej.2013.11.002

Last update:

No citation recorded.

Last update: 2024-11-18 14:22:18

No citation recorded.