skip to main content

Pengaruh Gas CO2 Terhadap Pertumbuhan, Kandungan asam lemak, lipid dan Karotenoid Total Chlorella emersonii

1Departemen Kimia, Universitas Andalas, Indonesia

2Jurusan Kimia, Universitas Andalas, Indonesia

Received: 3 Apr 2022; Revised: 30 Jan 2023; Accepted: 9 Feb 2023; Available online: 26 Mar 2023; Published: 5 Apr 2023.
Editor(s): Budi Warsito

Citation Format:
Abstract
Karbon dioksida (CO2) yang berasal dari kegiatan industri, merupakan salah satu penyebab gas rumah kaca yang berkontribusi terhadap pemanasan global. Belakangan ini mikroalga banyak diminati karena kemampuannya dalam biofiksasi CO2, sebagai sumber karbon pada proses fotosintesis. Mikroalga memiliki potensi untuk mengurangi emisi CO2, serta biomassa yang dihasilkan dapat dimanfaatkan sebagai bahan baku obat, maupun bahan baku biodiesel. Penelitian ini bertujuan untuk mengetahui kemampuan mikroalga Chlorella emersonii dalam menghasilkan karotenoid dan lipid akibat pengaruh paparan gas CO2 tinggi. Waktu pemaparan CO2 99,90% dilakukan setiap 5; 10; 15; 20 menit per hari selama 28 hari. Biomassa yang dihasilkan, diekstrak karotenoid total dan lipid total yang diukur menggunakan analisis spektrofotometri dan gravimetri. Lipid diesterifikasi dengan metode modifikasi metanol-HCl-transesterifikasi dan dikarakterisasi menggunakan Gas Chromatography-Mass Spectroscopy (GC-MS). Hasil penelitian menunjukkan bahwa, stres lingkungan yang disebabkan paparan gas CO2 selama 10 menit, menurunkan biomassa sebesar 45,17%, disertai peningkatan lipid dan kandungan asam lemak sebesar 52,31% dan 73,42%, dengan kandungan karotenoid total optimal 8,54 µg/mL. Budidaya Chlorella emersonii merupakan solusi yang efisien dan berkelanjutan untuk mengatasi masalah cemaran gas CO2, efek stres yang dihasilkan dapat menjadi strategi untuk meningkatkan kandungan karotenoid, lipid dan asam lemak yang berpotensi untuk biodiesel.
Fulltext View|Download
Keywords: : Fiksasi CO2; Chlorella emersonii; profil asam lemak

Article Metrics:

  1. Adamczyk, M., Lasek, J., & Skawińska, A. (2016). CO2 Biofixation and Growth Kinetics of Chlorella vulgaris and Nannochloropsis gaditana. Applied Biochemistry and Biotechnology, 179(7), 1248–1261. https://doi.org/10.1007/s12010-016-2062-3
  2. Aratboni, A., Cell, M., Aratboni, H. A., Rafiei, N., Granados, R. G., & Alemzadeh, A. (2019). Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microbial Cell Factories, 1–17. https://doi.org/10.1186/s12934-019-1228-4
  3. Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total extration and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917
  4. BP. (2020). Statistical Review of World Energy, 2020 | 69th Edition. Bp, 69, 66. www.bp.com/statisticalreview.%0A https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2020-full-report.pdf
  5. Cavonius, L. R., Carlsson, N. G., & Undeland, I. (2014). Quantification of total fatty acids in microalgae: Comparison of extraction and transesterification methods. Analytical and Bioanalytical Chemistry, 406(28), 7313–7322. https://doi.org/10.1007/s00216-014-8155-3
  6. Dineshkumar, R., Dash, S. K., & Sen, R. (2015). Process integration for microalgal lutein and biodiesel production with concomitant flue gas CO2 sequestration: a biorefinery model for healthcare, energy and environment. RSC Advances, 5(90), 73381–73394. https://doi.org/10.1039/c5ra09306f
  7. Dineshkumar, R., & Sen, R. (2020). A sustainable perspective of microalgal biorefinery for co-production and recovery of high-value carotenoid and biofuel with CO2 valorization. Biofuels, Bioproducts and Biorefining, 14(4), 879–897. https://doi.org/10.1002/bbb.2107
  8. Gong, M., & Bassi, A. (2016). Carotenoids from microalgae: A review of recent developments. Biotechnology Advances, 34(8), 1396–1412. https://doi.org/10.1016/j.biotechadv.2016.10.005
  9. Jawa, I. U., Ridlo, A., & Djunaedi, A. (2014). Kandungan Total Lipid Chlorella vulgaris yang Dikultur dalam Media yang Diinjeksi CO2. Journal of Materials Processing Technology, 3(4), 578–585
  10. Jesus, P. da C. C. de, Mendes, M. A., Perpétuo, E. A., Basso, T. O., & Nascimento, C. A. O. do. (2021). Extracellular carotenoid production and fatty acids profile of Parachlorella kessleri under increased CO2 concentrations. Journal of Biotechnology, 329(June 2020), 151–159. https://doi.org/10.1016/j.jbiotec.2021.02.004
  11. Jiang, L., Zhang, L., Nie, C., & Pei, H. (2018). Lipid productivity in limnetic Chlorella is doubled by seawater added with anaerobically digested effluent from kitchen waste. Biotechnology for Biofuels, 11(1), 1–14. https://doi.org/10.1186/s13068-018-1064-5
  12. Kativu, E. (2011). Carbon Dioxide Absorption Using Fresh Water Algae and Identifying Potential Uses of Algal Biomass. 133
  13. Kawaroe, M., Prartono, T., Sunuddin, A., Sari, D. W., & Augustine, D. (2009). specific Growth Rate of Chlorella sp. and Dunaliella sp. According to Different Concentrantion of Nutrient and Photoperiod. 1(16), 73–77
  14. Lichtenthaler, H. K. (1987). Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods in Enzymology, 148(C), 350–382. https://doi.org/10.1016/0076-6879(87)48036-1
  15. Loganathan, B. G., Orsat, V., & Lefsrud, M. (2020). Evaluation and interpretation of growth, biomass productivity and lutein content of Chlorella variabilis on various media. Journal of Environmental Chemical Engineering, 8(3), 103750. https://doi.org/10.1016/j.jece.2020.103750
  16. Moreira, J. B., Terra, A. L. M., Costa, J. A. V., & Morais, M. G. (2016). Utilization of CO2 in semi-continuous cultivation of Spirulina sp. and Chlorella fusca and evaluation of biomass composition. Brazilian Journal of Chemical Engineering, 33(3), 691–698. https://doi.org/10.1590/0104-6632.20160333s20150135
  17. Park, H., Kwak, M., Seo, J. W., Ju, J. H., Heo, S. Y., Park, S. M., & Hong, W. K. (2018). Enhanced production of carotenoids using a Thraustochytrid microalgal strain containing high levels of docosahexaenoic acid-rich oil. Bioprocess and Biosystems Engineering, 41(9), 1355–1370. https://doi.org/10.1007/s00449-018-1963-7
  18. Pemerintahan Republik Indonesia. (2010). Naskah Akademis Rencana Aksi Nasional Penurunan Emisi Gas Rumah Kaca. Peraturan Presiden, 1–162
  19. Peng, X., Meng, F., Wang, Y., Yi, X., & Cui, H. (2020). Effect of pH, Temperature, and CO2 Concentration on Growth and Lipid Accumulation of Nannochloropsis sp. MASCC 11. Journal of Ocean University of China, 19(5), 1183–1192. https://doi.org/10.1007/s11802-020-4302-y
  20. Perdana, B. A., Dharma, A., Zakaria, I. J., & Syafrizayanti. (2021). Freshwater pond microalgae for biofuel: Strain isolation, identification, cultivation and fatty acid content. Biodiversitas, 22(2), 505–511. https://doi.org/10.13057/biodiv/d220201
  21. Razzak, S. A., Ali, S. A. M., Hossain, M. M., & deLasa, H. (2017). Biological CO2 fixation with production of microalgae in wastewater – A review. Renewable and Sustainable Energy Reviews, 76(September 2015), 379–390. https://doi.org/10.1016/j.rser.2017.02.038
  22. Sun, H., Zhao, W., Mao, X., Li, Y., Wu, T., & Chen, F. (2018). High-value biomass from microalgae production platforms: Strategies and progress based on carbon metabolism and energy conversion. Biotechnology for Biofuels, 11(1), 1–23. https://doi.org/10.1186/s13068-018-1225-6
  23. Sun, X. M., Ren, L. J., Zhao, Q. Y., Ji, X. J., & Huang, H. (2018). Microalgae for the production of lipid and carotenoids: A review with focus on stress regulation and adaptation. Biotechnology for Biofuels, 11(1), 1–16. https://doi.org/10.1186/s13068-018-1275-9
  24. Tang, D., Han, W., Li, P., Miao, X., & Zhong, J. (2011). CO2 biofixation and fatty acid composition of Scenedesmus obliquus and Chlorella pyrenoidosa in response to different CO2 levels. Bioresource Technology, 102(3), 3071–3076. https://doi.org/10.1016/j.biortech.2010.10.047
  25. Zhang, S., & Liu, Z. (2021). Advances in the biological fixation of carbon dioxide by microalgae. Journal of Chemical Technology and Biotechnology, 96(6), 1475–1495. https://doi.org/10.1002/jctb.6714
  26. Zhu, L. D., Li, Z. H., & Hiltunen, E. (2016). Strategies for Lipid Production Improvement in Microalgae as a Biodiesel Feedstock. BioMed Research International, 2016, 7–9. https://doi.org/10.1155/2016/8792548

Last update:

No citation recorded.

Last update: 2024-12-27 22:50:21

No citation recorded.