skip to main content

Mekanisme Biosorpsi Senyawa Polutan Organik Persisten (POPs) dalam Pengolahan Limbah Cair Industri Farmasi: Suatu Review

1Program Doktor Teknik Lingkungan, Institut Teknologi Bandung, Indonesia

2Program Studi Teknik Lingkungan, Universitas Pelita Bangsa, Indonesia

Received: 5 Jul 2022; Revised: 12 Feb 2023; Accepted: 2 Mar 2023; Available online: 27 Mar 2023; Published: 5 Apr 2023.
Editor(s): Budi Warsito

Citation Format:
Abstract
Industri farmasi menghasilkan senyawa aktif farmasi yang bersifat persisten dan berbahaya bagi lingkungan dan makhluk hidup jika memasuki badan air. Pengolahan air limbah secara konvensional belum mampu menyisihkan senyawa aktif farmasi dengan baik. Review artikel ini dilakukan karena semakin meningkatnya populasi penduduk di Indonesia maka semakin meningkat pula produksi dan penggunaan produk obat-obatan dari industri farmasi. Pelepasan kandungan mikropolutan obat-obatan yang bersifat persisten ke dalam saluran pembuangan air adalah sekitar ng ~ µg/L secara terus menerus mengalir ke lingkungan dan air limbah akan membahayakan kesehatan makhluk hidup dan lingkungan. Senyawa aktif farmasi yang bersifat persisten terdiri dari analgesik dan antiinflamasi, antibiotik, antidiabetik, antihipertensi, beta-blocker, diuretik, lipid regulator, obat psikiatri, reseptor antagonis, hormon, beta-agonis, antineoplastik, produk topikal, antiseptik, agen kontras dan agen anti kanker. Artikel ini mereview mekanisme biosorpsi beberapa biosorben yang digunakan dalam menurunkan senyawa POPs dalam pengolahan limbah cair industri farmasi yang terdiri dari biomassa dari limbah pertanian dan limbah industri. Mekanisme biosorpsi senyawa POPs dalam pengolahan limbah cair industri farmasi meliputi interaksi elektrostatik, interaksi ikatan π-π elektron donor akseptor, ikatan hidrogen, pengisian pori, interaksi hidrofobik, atraksi dipol permanen, pertukaran ion, interaksi asam basa Lewis, gaya Van der Waals, dan fotodegradasi. Arah pengembangan penelitian berikutnya yaitu pengembangan biosorben dari limbah yang dimodifikasi kimia untuk mengoptimalkan kapasitas biosorpsi senyawa POPs dalam pengolahan limbah cair industri farmasi.
Fulltext View|Download
Keywords: limbah cair, industri farmasi, biosorpsi, polutan organik persisten, senyawa aktif farmasi

Article Metrics:

  1. Adewuyi, A. (2020). Chemically modified biosorbents and their role in the removal of emerging pharmaceuticalwaste in the water system. Water (Switzerland), 12(6), 1–31. https://doi.org/10.3390/W12061551
  2. Ahsan, A., Islam, T., Hernandez, C., Kim, H., Lin, Y., Curry, M. L., Gardea-torresdey, J., & Noveron, J. C. (2018). Adsorptive Removal of Sulfamethoxazole and Bisphenol A from Contaminated Water using Functionalized Carbonaceous Material Derived from Tea Leaves. Journal of Environmental Chemical Engineering, 6(4), 4215–4225. https://doi.org/10.1016/j.jece.2018.06.022
  3. Ahsan, M. A., Islam, M. T., Imam, M. A., Hyder, A. H. M. G., Jabbari, V., Dominguez, N., & Noveron, J. C. (2018). Biosorption of bisphenol A and sulfamethoxazole from water using sulfonated coffee waste: Isotherm, kinetic and thermodynamic studies. Journal of Environmental Chemical Engineering, 6(5), 6602–6611. https://doi.org/10.1016/j.jece.2018.10.004
  4. Akpomie, K. G., & Conradie, J. (2020). Banana peel as a biosorbent for the decontamination of water pollutants . A review. Environmental Chemistry Letters, 18(4), 1085–1112. https://doi.org/10.1007/s10311-020-00995-x
  5. An, W., Duan, L., Zhang, Y., Zhou, Y., Wang, B., & Yu, G. (2022). Pollution characterization of pharmaceutically active compounds ( PhACs ) in the northwest of Tai Lake Basin , China : Occurrence , temporal changes , riverine flux and risk assessment. Journal of Hazardous Materials, 422(May 2021), 126889. https://doi.org/10.1016/j.jhazmat.2021.126889
  6. Anfar, Z., Ait Ahsaine, H., Zbair, M., Amedlous, A., Ait El Fakir, A., Jada, A., & El Alem, N. (2020). Recent trends on numerical investigations of response surface methodology for pollutants adsorption onto activated carbon materials: A review. Critical Reviews in Environmental Science and Technology, 50(10), 1043–1084. https://doi.org/10.1080/10643389.2019.1642835
  7. Avil, J. I., & Ruiz-pulido, G. (2020). Nano-sorbent materials for pharmaceutical based wastewater effluents - An overview. Case Studies in Chemical and Environmental Engineering, 2(June). https://doi.org/10.1016/j.cscee.2020.100028
  8. Awasthi, M. K. (2022). Engineered biochar: A multifunctional material for energy and environment. Environmental Pollution, 298(July 2021), 118831. https://doi.org/10.1016/j.envpol.2022.118831
  9. Bello, O. S., Alao, O. C., & Alagbada, T. C. (2019). Biosorption of ibuprofen using functionalized bean husks. Sustainable Chemistry and Pharmacy, 13(May), 100151. https://doi.org/10.1016/j.scp.2019.100151
  10. Braschi, I., Blasioli, S., Gigli, L., Gessa, C. E., Alberti, A., & Martucci, A. (2010). Removal of sulfonamide antibiotics from water: Evidence of adsorption into an organophilic zeolite Y by its structural modifications. Journal of Hazardous Materials, 178(1–3), 218–225. https://doi.org/10.1016/j.jhazmat.2010.01.066
  11. Chandrasekaran, A., Patra, C., Narayanasamy, S., & Subbiah, S. (2020). Adsorptive removal of Ciprofloxacin and Amoxicillin from single and binary aqueous systems using acid-activated carbon from Prosopis juliflora. Environmental Research, 188(April), 109825. https://doi.org/10.1016/j.envres.2020.109825
  12. Chaukura, N, Gwenzi, W., Tavengwa, N., & ... (2016). Biosorbents for the removal of synthetic organics and emerging pollutants: opportunities and challenges for developing countries. In Environmental Development. Elsevier. https://www.sciencedirect.com/science/article/pii/S221146451630094X?casa_token=ykmOfJwIX68AAAAA:w1hQzv5DphJrrMf46adA3KRlT-El3377SbfATa3oYjmi_eQe7piAL_0UeB6AE9PE3lUPJTYIhonB
  13. Chaukura, Nhamo, Gwenzi, W., Tavengwa, N., & Manyuchi, M. M. (2016). Biosorbents for the removal of synthetic organics and emerging pollutants : Opportunities and challenges for developing countries. Environmental Development, 19, 84–89. https://doi.org/10.1016/j.envdev.2016.05.002
  14. Chen, J., Ouyang, J., Cai, X., Xing, X., Zhou, L., Liu, Z., & Cai, D. (2021). Removal of ciprofloxacin from water by millimeter-sized sodium alginate/H3PO4 activated corncob-based biochar composite beads. Separation and Purification Technology, 276(July), 119371. https://doi.org/10.1016/j.seppur.2021.119371
  15. Chen, S., Xie, J., & Wen, Z. (2021). Removal of pharmaceutical and personal care products (PPCPs) from waterbody using a revolving algal biofilm (RAB) reactor. In Journal of Hazardous Materials. Elsevier. https://www.sciencedirect.com/science/article/pii/S0304389420322743?casa_token=hKsaBU4hMhAAAAAA:j4yB4lxl-SMxUx_v5x5x27O7PakrD2yeDgbSn1OO8_DV7uruJc1_MQ-2NPZXfIImi8jiSPT2S1OH
  16. Cheng, N., Wang, B., Wu, P., Lee, X., Xing, Y., Chen, M., & Gao, B. (2021). Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environmental Pollution, 273, 116448. https://doi.org/10.1016/j.envpol.2021.116448
  17. Cunha, M. R., Lima, E. C., Lima, D. R., da Silva, R. S., Thue, P. S., Seliem, M. K., Sher, F., dos Reis, G. S., & Larsson, S. H. (2020). Removal of captopril pharmaceutical from synthetic pharmaceutical-industry wastewaters: Use of activated carbon derived from Butia catarinensis. Journal of Environmental Chemical Engineering, 8(6), 104506. https://doi.org/10.1016/j.jece.2020.104506
  18. Dang, B. T., Gotore, O., Ramaraj, R., Unpaprom, Y., Whangchai, N., Bui, X. T., Maseda, H., & Itayama, T. (2022). Sustainability and application of corncob-derived biochar for removal of fluoroquinolones. Biomass Conversion and Biorefinery, 12(3), 913–923. https://doi.org/10.1007/s13399-020-01222-x
  19. Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., He, X., & He, Y. (2015). An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Research, 79, 128–146. https://doi.org/10.1016/j.watres.2015.04.038
  20. Frontistis, Z., Antonopoulou, M., Venieri, D., Konstantinou, I., & Mantzavinos, D. (2017). Boron-doped diamond oxidation of amoxicillin pharmaceutical formulation: Statistical evaluation of operating parameters, reaction pathways and antibacterial activity. Journal of Environmental Management, 195, 100–109. https://doi.org/10.1016/j.jenvman.2016.04.035
  21. Gaur, N., Narasimhulu, K., & Pydisetty, Y. (2018). Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. Journal of Cleaner Production, 198, 1602–1631. https://doi.org/10.1016/j.jclepro.2018.07.076
  22. Gayathiri, M., Pulingam, T., Lee, K. T., & Sudesh, K. (2022). Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere, 294(December 2021), 133764. https://doi.org/10.1016/j.chemosphere.2022.133764
  23. Grifoni, M., Pedron, F., Rosellini, I., & Petruzzelli, G. (2019). From waste to resource: Sorption properties of biological and industrial sludge. In Industrial and Municipal Sludge: Emerging Concerns and Scope for Resource Recovery. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815907-1.00026-X
  24. Harikishore Kumar Reddy, D., Vijayaraghavan, K., Kim, J. A., & Yun, Y. S. (2017). Valorisation of post-sorption materials: Opportunities, strategies, and challenges. Advances in Colloid and Interface Science, 242, 35–58. https://doi.org/10.1016/j.cis.2016.12.002
  25. Hassan, M., Naidu, R., Du, J., Liu, Y., & Qi, F. (2020). Critical review of magnetic biosorbents: Their preparation, application, and regeneration for wastewater treatment. Science of the Total Environment, 702, 134893. https://doi.org/10.1016/j.scitotenv.2019.134893
  26. Jesus, J. De, Ingrid, A., Gomes, F., Angrizani, R., Oliveira, D., Faustino, A., Vinícius, M., & Grotto, D. (2019). Biosorption of pharmaceutical products by mushroom stem waste. Chemosphere, 237. https://doi.org/10.1016/j.chemosphere.2019.124515
  27. Jiang, S.-F., Ling, L.-L., Chen, W.-J., Liu, W.-J., Li, D.-C., & Jiang, H. (2019). High efficient removal of bisphenol A in a peroxymonosulfate/iron functionalized biochar system: Mechanistic elucidation and quantification of the contributors. Chemical Engineering Journal, 359, 572–583. https://doi.org/10.1016/j.cej.2018.11.124
  28. Karić, N., Maia, A. S., Teodorović, A., Atanasova, N., Langergraber, G., Crini, G., Ribeiro, A. R. L., & Đolić, M. (2021). Bio-waste valorisation: agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment. Chemical Engineering Journal Advances, 100239. https://doi.org/10.1016/j.ceja.2021.100239
  29. Krasucka, P., Pan, B., Sik Ok, Y., Mohan, D., Sarkar, B., & Oleszczuk, P. (2021). Engineered biochar – A sustainable solution for the removal of antibiotics from water. Chemical Engineering Journal, 405(June 2020), 126926. https://doi.org/10.1016/j.cej.2020.126926
  30. Kyzas, G. Z., Fu, J., & Matis, K. A. (2014). New biosorbent materials: selectivity and bioengineering insights. Processes. https://www.mdpi.com/73032
  31. Lessa, E. F., Nunes, M. L., & Fajardo, A. R. (2018). Chitosan/waste coffee-grounds composite: An efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water. In Carbohydrate polymers. Elsevier. https://www.sciencedirect.com/science/article/pii/S0144861718301565?casa_token=rs3zKJE_kBEAAAAA:-BLL1lzOil9pxP-JDTGw8x8mVffilY_JFYwFDnIwoYz4GuJSXRn5yT79Ng8gpyFm-i_s1chOM5VJ
  32. Limousy, L., Ghouma, I., Ouederni, A., & Jeguirim, M. (2017). Amoxicillin removal from aqueous solution using activated carbon prepared by chemical activation of olive stone. Environmental Science and Pollution Research, 24(11), 9993–10004. https://doi.org/10.1007/s11356-016-7404-8
  33. Maged, A., Dulanja, P., Yang, X., Pathirannahalage, C., Bhatnagar, A., & Sik, Y. (2021). New mechanistic insight into rapid adsorption of pharmaceuticals from water utilizing activated biochar. Environmental Research, 202(May), 111693. https://doi.org/10.1016/j.envres.2021.111693
  34. Mahouachi, L., Rastogi, T., Palm, W. U., Ghorbel-Abid, I., Ben Hassen Chehimi, D., & Kümmerer, K. (2020). Natural clay as a sorbent to remove pharmaceutical micropollutants from wastewater. Chemosphere, 258, 127213. https://doi.org/10.1016/j.chemosphere.2020.127213
  35. Morosanu, I., Teodosiu, C., Fighir, D., & Paduraru, C. (2019). Simultaneous biosorption of micropollutants from aqueous effluents by rapeseed waste. Process Safety and Environmental Protection, 132, 231–239. https://doi.org/10.1016/j.psep.2019.09.029
  36. Negrete-Bolagay, D., Zamora-Ledezma, C., Chuya-Sumba, C., De Sousa, F. B., Whitehead, D., Alexis, F., & Guerrero, V. H. (2021). Persistent organic pollutants: The trade-off between potential risks and sustainable remediation methods. Journal of Environmental Management, 300(May), 113737. https://doi.org/10.1016/j.jenvman.2021.113737
  37. Nieva, A. D., Buenafe, R. J. Q., Orense, L. M. S., & ... (2019). Biosorption of doxycycline using Carica papaya L. peels. IOP Conference Series: Earth and Environmental Science, 344. https://iopscience.iop.org/article/10.1088/1755-1315/344/1/012010/meta
  38. Özer, A., & Turabik, M. (2010). Competitive Biosorption of Acid Dyes from Binary Solutions onto Enteromorpha prolifera: Application of the First Order Derivative Spectrophotometric Analysis Method. Separation Science and Technology. https://doi.org/10.1080/01496390903418071
  39. Park, C. M., Kim, Y. M., Kim, K.-H., Wang, D., Su, C., & Yoon, Y. (2019). Potential utility of graphene-based nano spinel ferrites as adsorbent and photocatalyst for removing organic/inorganic contaminants from aqueous solutions: A mini review. Chemosphere, 221, 392–402. https://doi.org/10.1016/j.chemosphere.2019.01.063
  40. Peiris, C., Nawalage, S., Wewalwela, J. J., Gunatilake, S. R., & Vithanage, M. (2020). Biochar based sorptive remediation of steroidal estrogen contaminated aqueous systems: A critical review. Environmental Research, 191. https://doi.org/10.1016/j.envres.2020.110183
  41. Pi, Y., Li, X., Xia, Q., Wu, J., Li, Y., Xiao, J., & Li, Z. (2018). Adsorptive and photocatalytic removal of Persistent Organic Pollutants (POPs) in water by metal-organic frameworks (MOFs). Chemical Engineering Journal, 337, 351–371. https://doi.org/10.1016/j.cej.2017.12.092
  42. Piccin, J. S., Cadaval, T. R. S. A., De Pinto, L. A. A., & Dotto, G. L. (2017). Adsorption isotherms in liquid phase: Experimental, modeling, and interpretations. In Adsorption Processes for Water Treatment and Purification. https://doi.org/10.1007/978-3-319-58136-1_2
  43. Priyan, V. V., Shahnaz, T., Suganya, E., & Sivaprakasam, S. Narayanasamy, S. (2021). Ecotoxicological assessment of micropollutant Diclofenac biosorption on magnetic sawdust: Phyto, Microbial and Fish toxicity studies. In Journal of Hazardous Materials. Elsevier. https://www.sciencedirect.com/science/article/pii/S0304389420315181?casa_token=Qc_jWz-l_SwAAAAA:-teH51qvpD1xz_D9zF56EcN-u03h51xivk8tO87gVtrteL3B1L7lAtC5ieKQ8gn4gVr4pSM0XP-8
  44. Rajapaksha, A. U., Dilrukshi Premarathna, K. S., Gunarathne, V., Ahmed, A., & Vithanage, M. (2019). Sorptive removal of pharmaceutical and personal care products from water and wastewater. Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology Emerging Contaminants and Micro Pollutants, 213–238. https://doi.org/10.1016/B978-0-12-816189-0.00009-3
  45. Ren, B., Shi, X., Jin, X., Wang, X. C., & Jin, P. (2021). Comprehensive evaluation of pharmaceuticals and personal care products (PPCPs) in urban sewers: Degradation, intermediate products and environmental risk. Chemical Engineering Journal, 404(July 2020), 127024. https://doi.org/10.1016/j.cej.2020.127024
  46. Semerjian, L. (2018). Removal of heavy metals (Cu, Pb) from aqueous solutions using pine (Pinus halepensis) sawdust: Equilibrium, kinetic, and thermodynamic studies. In Environmental technology & innovation. Elsevier. https://www.sciencedirect.com/science/article/pii/S2352186418302323?casa_token=Z5l7-zEQek4AAAAA:_GmHKl7RhSBD4YMwF2LJ9M_888YkHWYyLmVmSjxtElvfaOLy90k3P9jfVbbV6np751FtAosX-HI1
  47. Shin, J., Kwak, J., Lee, Y., Kim, S., & Choi, M. (2021). Competitive adsorption of pharmaceuticals in lake water and wastewater ef fl uent by pristine and NaOH-activated biochars from spent coffee wastes : Contribution of hydrophobic and p - p. Environmental Pollution, 270, 116244. https://doi.org/10.1016/j.envpol.2020.116244
  48. Singh, S., Kumar, V., Anil, A. G., Kapoor, D., Khasnabis, S., Shekar, S., Pavithra, N., Samuel, J., Subramanian, S., Singh, J., & Ramamurthy, P. C. (2021). Adsorption and detoxification of pharmaceutical compounds from wastewater using nanomaterials: A review on mechanism, kinetics, valorization and circular economy. Journal of Environmental Management, 300(January), 113569. https://doi.org/10.1016/j.jenvman.2021.113569
  49. Steigerwald, J. M., & Ray, J. R. (2021). Adsorption behavior of perfluorooctanesulfonate (PFOS) onto activated spent coffee grounds biochar in synthetic wastewater effluent. Journal of Hazardous Materials Letters, 2, 100025. https://doi.org/https://doi.org/10.1016/j.hazl.2021.100025
  50. Syeda, H. I., Sultan, I., Razavi, K. S., & Yap, P. S. (2022). Biosorption of heavy metals from aqueous solution by various chemically modified agricultural wastes: A review. Journal of Water Process Engineering, 46(October 2021), 102446. https://doi.org/10.1016/j.jwpe.2021.102446
  51. Thirunavukkarasu, A., Nithya, R., & Sivashankar, R. (2021). Continuous fixed-bed biosorption process : A review. Chemical Engineering Journal Advances, 8, 100188. https://doi.org/10.1016/j.ceja.2021.100188
  52. Titchou, F. E., Zazou, H., Afanga, H., El Gaayda, J., Akbour, R. A., & Hamdani, M. (2021). Removal of Persistent Organic Pollutants (POPs) from water and wastewater by adsorption and electrocoagulation process. Groundwater for Sustainable Development, 13(October 2020), 100575. https://doi.org/10.1016/j.gsd.2021.100575
  53. Tiwari, B., Drogui, P., & Tyagi, R. D. (2020). Removal of emerging micro-pollutants from pharmaceutical industry wastewater. In Current Developments in Biotechnology and Bioengineering. Elsevier B.V. https://doi.org/10.1016/b978-0-12-819594-9.00018-8
  54. Tomul, F., Arslan, Y., Kabak, B., & Trak, D. (2021). Adsorption process of naproxen onto peanut shell‐derived biosorbent: important role of n–π interaction and van der Waals force. Journal of Chemical …. https://doi.org/10.1002/jctb.6613
  55. Verlicchi, P., Zambello, E., & Al Aukidy, M. (2013). Removal of pharmaceuticals by conventional wastewater treatment plants. In Comprehensive Analytical Chemistry (2 ed., Vol. 62). Copyright © 2013 Elsevier B.V. All rights reserved. https://doi.org/10.1016/B978-0-444-62657-8.00008-2
  56. Viotti, P. V., Moreira, W. M., Santos, O. A. A. dos, Bergamasco, R., Vieira, A. M. S., & Vieira, M. F. (2019). Diclofenac removal from water by adsorption on Moringa oleifera pods and activated carbon: Mechanism, kinetic and equilibrium study. Journal of Cleaner Production, 219, 809–817. https://doi.org/10.1016/j.jclepro.2019.02.129
  57. Wang, H., Fang, C., Wang, Q., Chu, Y., Song, Y., Chen, Y., & Xue, X. (2018). Sorption of tetracycline on biochar derived from rice straw and swine manure. RSC Advances, 8(29), 16260–16268. https://doi.org/10.1039/c8ra01454j
  58. Wang, J., & Guo, X. (2020a). Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere, 258, 127279. https://doi.org/10.1016/j.chemosphere.2020.127279
  59. Wang, J., & Guo, X. (2020b). Adsorption kinetic models: Physical meanings, applications, and solving methods. Journal of Hazardous Materials, 390(January), 122156. https://doi.org/10.1016/j.jhazmat.2020.122156
  60. Wang, K., Zhuang, T., Su, Z., Chi, M., & Wang, H. (2021). Antibiotic residues in wastewaters from sewage treatment plants and pharmaceutical industries: Occurrence, removal and environmental impacts. Science of The Total Environment, 788, 147811. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.147811
  61. Wang, Y., Jing, B., Wang, F., Wang, S., Liu, X., Ao, Z., & Li, C. (2020). Mechanism Insight into enhanced photodegradation of pharmaceuticals and personal care products in natural water matrix over crystalline graphitic carbon nitrides. Water Research, 180. https://doi.org/10.1016/j.watres.2020.115925
  62. Wu, Q., Zhang, Y., Cui, M. hua, Liu, H., Liu, H., Zheng, Z., Zheng, W., Zhang, C., & Wen, D. (2021). Pyrolyzing pharmaceutical sludge to biochar as an efficient adsorbent for deep removal of fluoroquinolone antibiotics from pharmaceutical wastewater: Performance and mechanism. Journal of Hazardous Materials, July, 127798. https://doi.org/10.1016/j.jhazmat.2021.127798
  63. Yaqubi, O., Tai, M. H., Mitra, D., Gerente, C., Neoh, K. G., Wang, C. H., & Andres, Y. (2021). Adsorptive removal of tetracycline and amoxicillin from aqueous solution by leached carbon black waste and chitosan-carbon composite beads. Journal of Environmental Chemical Engineering, 9(1), 104988. https://doi.org/10.1016/j.jece.2020.104988
  64. Zazou, H., Afanga, H., Akhouairi, S., Ouchtak, H., Addi, A. A., Akbour, R. A., Assabbane, A., Douch, J., Elmchaouri, A., Duplay, J., Jada, A., & Hamdani, M. (2019). Treatment of textile industry wastewater by electrocoagulation coupled with electrochemical advanced oxidation process. Journal of Water Process Engineering, 28, 214–221. https://doi.org/https://doi.org/10.1016/j.jwpe.2019.02.006
  65. Zhang, D., Ran, Y., Cao, X., Mao, J., Cui, J., & ... (2015). Biosorption of nonylphenol by pure algae, field-collected planktons and their fractions. In … Pollution. Elsevier. https://www.sciencedirect.com/science/article/pii/S026974911400520X?casa_token=qcZvsptvS8UAAAAA:F8SKWPniixM1ozR1AHH0YdLYU72nnHOs-IwjU4VXXrqpV1ZV23K1McY4rBT8G5GpBjJv8KYDIi_V
  66. Zhang, N., Bao, T., Gao, Y., Xu, X., & Wang, S. (2022). Growth of MOF@COF on corncob as effective adsorbent for enhancing adsorption of sulfonamides and its mechanism. Applied Surface Science, 580(December 2021), 152285. https://doi.org/10.1016/j.apsusc.2021.152285
  67. Zhao, Y., Cho, C. W., Wang, D., Choi, J. W., Lin, S., & Yun, Y. S. (2020). Simultaneous scavenging of persistent pharmaceuticals with different charges by activated carbon fiber from aqueous environments. Chemosphere, 247, 125909. https://doi.org/10.1016/j.chemosphere.2020.125909

Last update:

No citation recorded.

Last update: 2025-01-27 12:25:56

No citation recorded.