skip to main content

Studi Penggunaan Maximum Entropy untuk Pemodelan Kesesuaian Habitat Bekantan (Naslais larvatus wurmb, 1787) di Kawasan Cagar Alam Teluk Adang

1Fakultas Kehutanan, Universitas Mulawarman, Samarinda, Indonesia

2PT Ecology and Conservation Center for Tropical Studies (ECOSITROP), Indonesia

Received: 22 Feb 2023; Revised: 21 Feb 2024; Accepted: 6 Mar 2024; Available online: 7 Aug 2024; Published: 12 Aug 2024.
Editor(s): Budi Warsito

Citation Format:
Abstract
Bekantan (Nasalis larvatus Wurm, 1787) adalah primata endemik Borneo yang dikategorikan sebagai spesies terancam punah oleh IUCN dan dilindungi oleh peraturan nasional. Populasi bekantan telah mengalami penurunan signifikan di berbagai habitat, termasuk di Cagar Alam Teluk Adang yang berbagi ruang dengan aktivitas manusia. Identifikasi faktor-faktor yang mempengaruhi habitat yang cocok bagi bekantan dalam sebaran spasial sangat penting untuk menentukan tindakan konservasi yang tepat untuk melindungi populasi bekantan di Cagar Alam Teluk Adang. Penelitian ini bertujuan 1) Menghasilkan peta kesesuaian habitat melalui model hubungan antara keberadaan bekantan dengan variabel lingkungan yang berpengaruh dan 2) Memetakan struktur habitat berdasarkan pada hasil peta kesesuaian habitat. Penelitian ini menggunakan Model MaxEnt untuk membangun prediksi distribusi bekantan berdasarkan data perjumpaan dan sepuluh variabel lingkungan. Hasil kesesuaian habitat kemudian dianalis menggunakan metode Analisis Morphological Spatial Pattern Analysis (MSPA) untuk menghasilkan struktur habitat.  Berdasarkan hasil penelitian melalui Maxent, faktor-faktor lingkungan yang berpengaruh terhadap kehadiran bekantan adalah hutan mangrove, jarak dari sungai, jarak dari garis pantai dan Leaf Area Index. Hasil klasifikasi juga menunjukan luas potensi habitat bekantan adalah sekitar 7.513 Ha (15.7% dari total luasan). Habitat bekantan telah mengalami fragmentasi dengan 11 inti utama yang dapat secara utuh mengakomodasi home range bekantan.
Fulltext View|Download
Keywords: Bekantan; Cagar alam; Teluk Adang; MSPA; Mangrove

Article Metrics:

  1. Alamgir, M., Campbell, M.J., Sloan, S., Suhardiman, A., Supriatna, J. & Laurance, W.F. 2019. High-risk infrastructure projects pose imminent threats to forests in Indonesian Borneo. Scientific Reports. 9(1). DOI: 10.1038/s41598-018-36594-8
  2. Almeida-Rocha, J.M. de, Peres, C.A. & Oliveira, L.C. 2017. Primate responses to anthropogenic habitat disturbance: A pantropical meta-analysis. Biological Conservation. 215. DOI: 10.1016/j.biocon.2017.08.018
  3. Atmoko, T., Mardiastuti, A., Bismark, M., Prasetyo, L.B. & Iskandar, E. 2020. Habitat suitability of proboscis monkey (Nasalis larvatus) in Berau delta, East Kalimantan, Indonesia. Biodiversitas. 21(11). DOI: 10.13057/biodiv/d211121
  4. Atmoko, T., Mardiastuti, A., Bismark, M., Prasetyo, L.B. & Iskandar, E. 2021. Populasi dan sebaran bekantan (Nasalis larvatus) di Delta Berau. Jurnal Penelitian Kehutanan Wallacea. 10(1). DOI: 10.18330/jwallacea.2021.vol10iss1pp11-23
  5. Bernard, H., Matsuda, I., Hanya, G. & Ahmad, A.H. 2011. Characteristics of Night Sleeping Trees of Proboscis Monkeys (Nasalis larvatus) in Sabah, Malaysia. International Journal of Primatology. 32(1). DOI: 10.1007/s10764-010-9465-8
  6. Bismark, M. 2010. Proboscis Monkey (Nasalis larvatus): Bio-ecology and Conservation. In Indonesian Primates. DOI: 10.1007/978-1-4419-1560-3_12
  7. Boegh, E., Soegaard, H., Broge, N., Schelde, K., Thomsen, A., Hasager, C.B. & Jensen, N.O. 2002. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment. 81(2–3). DOI: 10.1016/S0034-4257(01)00342-X
  8. Boonratana, R. 2000. Ranging behavior of proboscis monkeys (Nasalis larvatus) in the Lower Kinabatangan, northern Borneo. International Journal of Primatology. 21(3). DOI: 10.1023/A:1005496004129
  9. Coudrat, C.N.Z., Nanthavong, C. & Nekaris, K.A.I. 2014. Conservation of the red-shanked douc Pygathrix nemaeus in Lao People’s Democratic Republic: Density estimates based on distance sampling and habitat suitability modelling. ORYX. 48(4). DOI: 10.1017/S0030605313000124
  10. Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E. & Yates, C.J. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions. 17(1). DOI: 10.1111/j.1472-4642.2010.00725.x
  11. Firman, F., Rizali, A., Razie, F. & Hidayat, T. 2017. MODEL PENGELOLAAN CAGAR ALAM TELUK ADANG DALAM UPAYA KONSERVASI SUMBERDAYA LINGKUNGAN DI KABUPATEN PASER KALIMANTAN TIMUR. EnviroScienteae. 13(2). DOI: 10.20527/es.v13i2.3913
  12. Hansen, M.F., Nawangsari, V.A., van Beest, F.M., Schmidt, N.M., Stelvig, M., Dabelsteen, T. & Nijman, V. 2020. Habitat suitability analysis reveals high ecological flexibility in a “strict” forest primate. Frontiers in Zoology. 17(1). DOI: 10.1186/s12983-020-00352-2
  13. Harding, L.E. 2015. Nasalis larvatus (Primates: Colobini). Mammalian Species. 47(926). DOI: 10.1093/mspecies/sev009
  14. Loiseau, N., Mouquet, N., Casajus, N., Grenié, M., Guéguen, M., Maitner, B., Mouillot, D., Ostling, A., et al. 2020. Global distribution and conservation status of ecologically rare mammal and bird species. Nature Communications. 11(1). DOI: 10.1038/s41467-020-18779-w
  15. Mangiacotti, M., Scali, S., Sacchi, R., Bassu, L., Nulchis, V. & Corti, C. 2013. Assessing the Spatial Scale Effect of Anthropogenic Factors on Species Distribution. PLoS ONE. 8(6). DOI: 10.1371/journal.pone.0067573
  16. Matsuda, I., Tuuga, A. & Higashi, S. 2009. Ranging behavior of proboscis monkeys in a riverine forest with special reference to ranging in inland forest. International Journal of Primatology. 30(2). DOI: 10.1007/s10764-009-9344-3
  17. Matsuda, I., Kubo, T., Tuuga, A. & Higashi, S. 2010. A bayesian analysis of the temporal change of local density of proboscis monkeys: Implications for environmental effects on a multilevel society. American Journal of Physical Anthropology. 142(2). DOI: 10.1002/ajpa.21218
  18. Matsuda, I., Tuuga, A. & Bernard, H. 2011. Riverine refuging by proboscis monkeys (Nasalis larvatus) and sympatric primates: Implications for adaptive benefits of the riverine habitat. Mammalian Biology. 76(2). DOI: 10.1016/j.mambio.2010.03.005
  19. Matsuda, I., Tuuga, A., Bernard, H., Sugau, J. & Hanya, G. 2013. Leaf selection by two Bornean colobine monkeys in relation to plant chemistry and abundance. Scientific Reports. 3. DOI: 10.1038/srep01873
  20. Meijaard, E. 2016. Phillipps’ Field Guide to the Mammals of Borneo and Their Ecology: Sabah, Sarawak, Brunei, and Kalimantan. Journal of Mammalogy. 97(5). DOI: 10.1093/jmammal/gyw115
  21. Meijaard, E. & Nijman, V. 2000. Distribution and conservation of the proboscis monkey (Nasalis larvatus) in Kalimantan, Indonesia. Biological Conservation. 92(1). DOI: 10.1016/S0006-3207(99)00066-X
  22. Morales, N.S., Fernández, I.C. & Baca-González, V. 2017. MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ. 2017(3). DOI: 10.7717/peerj.3093
  23. Mukhlisi Mukhlisi and Nuryani, A. and S.T. 2021. Monitoring of Floristic Composition and Species Diversity an Initial Step Towards the Restoration of Mangrove Forest in Teluk Adang Nature Reserve, Indonesia. Polish Journal of Environmental Studies. 30(1):793–802. DOI: 10.15244/pjoes/123608
  24. Newbold, T., Hudson, L.N., Hill, S.L.L., Contu, S., Lysenko, I., Senior, R.A., Börger, L., Bennett, D.J., et al. 2015. Global effects of land use on local terrestrial biodiversity. Nature. 520(7545). DOI: 10.1038/nature14324
  25. Phillipps, Q. & Phillipps, K. 2016. Phillipps’ Field Guide to the Mammals of Borneo: Sabah, Sarawak, Brunei, and Kalimantan (Princeton Field Guides)
  26. Phillips, S.J. & Dudík, M. 2008. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography. 31(2). DOI: 10.1111/j.0906-7590.2008.5203.x
  27. Phillips, S.J., Anderson, R.P. & Schapire, R.E. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling. 190(3–4). DOI: 10.1016/j.ecolmodel.2005.03.026
  28. Sala, O.E., Chapin, F.S., Armesto, J.J., Berlow, E., Bloomfield, J., Dirzo, R., Huber-Sanwald, E., Huenneke, L.F., et al. 2000. DOI: 10.1126/science.287.5459.1770
  29. Schooley, R.L. & Branch, L.C. 2011. DOI: 10.1007/s10531-011-0049-5
  30. Soille, P. & Vogt, P. 2009. Morphological segmentation of binary patterns. Pattern Recognition Letters. 30(4). DOI: 10.1016/j.patrec.2008.10.015
  31. Suwarto, Prasetyo, L.B. & Kartono, A.P. 2016. Kesesuaian habitat bekantan (Nasalis larvatus Wurmb, 1781) di hutan mangrove Taman Nasional Kutai, Kalimantan Timur. Bonorowo Wetlands. 6(1)
  32. Toulec, T., Lhota, S., Soumarová, H., Putera, A.K.S. & Kustiawan, W. 2020. Shrimp farms, fire or palm oil? Changing causes of proboscis monkey habitat loss. Global Ecology and Conservation. 21. DOI: 10.1016/j.gecco.2019.e00863
  33. Wardatutthoyyibah, Pudyatmoko, S., Subrata, S.A. & Imron, M.A. 2019. The sufficiency of existed protected areas in conserving the habitat of proboscis monkey (Nasalis Larvatus). Biodiversitas. 20(1). DOI: 10.13057/biodiv/d200101
  34. Widyastuti, S., Perwitasari-Farajallah, D., Prasetyo, L.B., Iskandar, E. & Setiawan, A. 2020. Maxent modelling of habitat suitability for the endangered javan gibbon (Hylobates moloch) in less-protected Dieng Mountains, Central Java. In IOP Conference Series: Earth and Environmental Science. V. 457. DOI: 10.1088/1755-1315/457/1/012014
  35. Yeager, C.P. 1989. Feeding ecology of the proboscis monkey (Nasalis larvatus). International Journal of Primatology. 10(6). DOI: 10.1007/BF02739363

Last update:

No citation recorded.

Last update: 2025-01-19 20:18:00

No citation recorded.