skip to main content

Recycle Botol Plastik Polyethylene Terephthalate (PET) Menjadi Serat Nilon sebagai Perwujudan Sustainable Development dengan Prinsip Green Chemistry: A Review

1Program Doktoral Pendidikan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Yogyakarta, Indonesia, Indonesia

2SMA Negeri 1 Pakem, Yogyakarta, Indonesia, Indonesia

Received: 9 Oct 2024; Revised: 16 Feb 2025; Accepted: 17 Apr 2025; Available online: 25 May 2025; Published: 31 May 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract

Karya tulis ilmiah ini bertujuan memberikan gambaran umum dan penjelasan lengkap terkait teknologi tepat guna pemanfaatan limbah botol plastik (PET) yang dapat didaur ulang menjadi serat nilon dari sepuluh tahun terakhir dari berbagai jurnal internasional. Setelah melakukan pencarian pada database bereputasi nasional dan internasional dengan menggunakan pola kunci relevansi (Pola 1: “bottle plastic” “recycling" "fiber"; Pola 2 : “bottle plastic” “nylon fiber” “suistainable development” ; Pola 3: "PET" “nylon fiber" "green chemistry"), dari 20, terdapat 10 artikel yang relevan akan ditinjau secara sistematis. Tujuan sistematisnya adalah menghasilkan tinjauan umum dan pengetahuan mengenai daur ulang limbah botol plastik menjadi serat nilon yang dapat mewujudkan sustainable development dengan menggunakan prinsip-prinsip green chemistry. Berdasarkan hasil yang diperoleh, dapat ditarik kesimpulan bahwa daur ulang botol plastik (PET) dapat diubah menjadi serat nilon secara mekanis dan kimiawi. Mekanisme pembuatan nilon dari botol plastik bersifat ramah lingkungan yang dapat dijelaskan dengan pengintegrasian green chemistry. Penerapan prinsip green chemistry untuk menjelaskan topik ini yaitu prinsip ke 1 “waste prevention instead of remediation” dan ke 6 “energy efficient by design”. Penelitian ini diharapkan dapat membuka pengetahuan lebih luas kepada masyarakat umum terkait gambaran umum dan penjelasan lengkap terkait tahapan teknologi tepat guna pemanfaatan limbah botol plastik (PET) yang dapat didaur ulang menjadi serat nilon.

Fulltext View|Download
Keywords: Daur ulang; green chemistry; sampah botol plastik; serat nilon; sustainable development

Article Metrics:

  1. Abedsoltan, H. (2023). A focused review on recycling and hydrolysis techniques of polyethylene terephthalate. In Polymer Engineering and Science, 63(9), pp. 2651–2674). John Wiley and Sons Inc. https://doi.org/10.1002/pen.26406
  2. Aishwariya, & Juliet, R. (2021). A contaminant of concern - microplastics and microfibers. 48(11)
  3. Amalia, J. N., & Yulandr, A. (2022). Pendekatan green chemistry suatu inovasi dalam pembelajaran kimia berwawasan lingkungan. Universitas Islam Negeri Ar-Raniry Banda Aceh, 1(1), 1–58
  4. Andrady, A. L. (2011). Microplastics in the marine environment. In Marine Pollution Bulletin, 62( 8), pp. 1596–1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
  5. Bağ, H., & Çalık, M. (2017). A thematic review of argumentation studies at the K-8 level. Education and Science, 42(190), 281-303. http://dx.doi.org/10.15390/EB.2017.6845
  6. Benyathiar, P., Kumar, P., Carpenter, G., Brace, J., & Mishra, D. K. (2022). Polyethylene terephthalate (PET) bottle‐to‐bottle recycling for the beverage industry: A Review. In Polymers,14(12). https://doi.org/10.3390/polym14122366
  7. Booij, M., Helene, Y., Kurt, B., Hommez, S., Eric, O. ;, & Goethals, J. (2000). 54) Depolymerization Of Polyamides 75 Inventors
  8. Çalık, M., & Sözbilir, M. (2014). The parameters of the content analysis. Education and Science, 39(174), 33–38. https://doi.org/10.15390/EB.2014.341
  9. Cao, F., Wang, L., Zheng, R., Guo, L., Chen, Y., & Qian, X. (2022). Research and progress of chemical depolymerization of waste PET and high-value application of its depolymerization products. In RSC Advances,12(49), pp. 31564–31576. https://doi.org/10.1039/d2ra06499e
  10. Choudhury, A. K. R. (2017). Green chemistry and textile industry. Journal of Textile Engineering & Fashion Technology, 2(3), 351–361. https://doi.org/10.15406/jteft.2017.02.00056
  11. Diao, J., Hu, Y., Tian, Y., Diao, J., Hu, Y., Tian, Y., Carr, R., & Moon, T. S. (2023). Upcycling of poly ( ethylene terephthalate ) to produce high-value bio-products. Cell Reports. https://doi.org/https://doi.org/10.1016/j.celrep.2022.111908
  12. Engler, R. E. (2012). The complex interaction between marine debris and toxic chemicals in the ocean. In Environmental Science and Technology,46(22), pp. 12302–12315). https://doi.org/10.1021/es3027105
  13. Ghosal, K., & Nayak, C. (2022). Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions-hope vs. hype. In Materials Advances, 3(4), pp. 1974–1992. https://doi.org/10.1039/d1ma01112j
  14. Graham, R., Erickson, E., Brizendine, R. K., Beckham, T., Mcgeehan, J. E., Pickford, A. R., Graham, R., Erickson, E., Brizendine, R. K., Salvachu, D., & Michener, W. E. (2022). Article The role of binding modules in enzymatic poly ( ethylene terephthalate ) hydrolysis at high-solids loadings The role of binding modules in enzymatic poly ( ethylene terephthalate ) hydrolysis at high-solids loadings. Chem Catalysis, 2644–2657
  15. Hannah Ritchie, Max Roser and Pablo Rosado (2020) - “Renewable Energy” Published online at OurWorldInData.org. Retrieved from: ' https://ourworldindata.org/renewable-energy' [Online Resource]
  16. Haryanti, S., Ganefati, S. P., & Muryani, S. (2023). The social capital and impact in waste management of the waste bank system in Yogyakarta. Jurnal Teknologi Lingkungan, 24(2), 190–199
  17. Joseph, T. M., Azat, S., Ahmadi, Z., Moini, O., & Thomas, S. (2024). Case Studies in Chemical and Environmental Engineering Polyethylene terephthalate ( PET ) recycling : A review. Case Studies in Chemical and Environmental Engineering, 9. https://doi.org/10.1016/j.cscee.2024.100673
  18. Kijo-Kleczkowska, A., & Gnatowski, A. (2022). Recycling of PlasticWaste, with Particular Emphasis on Thermal Methods—Review. Energies, 15(6). https://doi.org/10.3390/en15062114
  19. Kumar, S., Panda, A. K., & Singh, R. K. (2011). A review on tertiary recycling of high-density polyethylene to fuel. In Resources, Conservation and Recycling,55(11), pp. 893–910). https://doi.org/10.1016/j.resconrec.2011.05.005
  20. Kurowska-Susdorf, A.; Zwierzd˙ zy ´nski, M.; Bevanda, A.M.; Tali´c, S.; Ivankovi´c, A.; Płotka-Wasylka, J. Green analytical chemistry: ˙ Social dimension and teaching. TrAC-Trends Anal. Chem. 2019, 111, 185–196
  21. Larson, A., O’Brien, K., & Anderson, A. (2021). Shaw Industries: Sustainable Business, Entrepreneurial Innovation, and Green Chemistry. SSRN Electronic Journal, 1–17. https://doi.org/10.2139/ssrn.1278403
  22. Lee, Y., Andrew Lin, K. Y., Kwon, E. E., & Lee, J. (2019). Renewable routes to monomeric precursors of nylon 66 and nylon 6 from food waste. In Journal of Cleaner Production, 227, pp. 624–633). https://doi.org/10.1016/j.jclepro.2019.04.194
  23. Lozano-Gonza´lez, M. J., Gonza´lez, G., Teresa Rodriguez-Hernandez, M. A., Gonzalez-De, E. A., Santos, L., & Villalpando-Olmos, J. (2000). Physical-mechanical properties and morphological study on nylon-6 recycling by injection molding. In J Appl Polym Sci (Vol. 76)
  24. Maitlo, G., Ali, I., Maitlo, H. A., Ali, S., Unar, I. N., Ahmad, M. B., Bhutto, D. K., Karmani, R. K., Naich, S. ur R., Sajjad, R. U., Ali, S., & Afridi, M. N. (2022). Plastic Waste Recycling, Applications, and Future Prospects for a Sustainable Environment. Sustainability (Switzerland), 14(18). https://doi.org/10.3390/su141811637
  25. Mitarlis, Ibnu, S., Rahayu, S., & Sutrisno. (2017). Environmental literacy with green chemistry oriented in 21st century learning. AIP Conference Proceedings, 1911(1). https://doi.org/10.1063/1.5016013
  26. Ncube, A., Mtetwa, S., Bukhari, M., Fiorentino, G., & Passaro, R. (2023). Circular Economy and Green Chemistry: The Need for Radical Innovative Approaches in the Design for New Products. Energies, 16(4), 1–21. https://doi.org/10.3390/en16041752
  27. Patti, A., Cicala, G., & Acierno, D. (2021). Eco-sustainability of the textile production: Waste recovery and current recycling in the composites world. Polymers, 13(1), 1–22. https://doi.org/10.3390/polym13010134
  28. Perosa, A., Gonella, F., & Spagnolo, S. (2019). Systems thinking: Adopting an emergy perspective as a tool for teaching green chemistry. Journal of Chemical Education, 96(12), 2784–2793. https://doi.org/10.1021/acs.jchemed.9b00377
  29. Putra, H. P., & Yuriandala, Y. (2010). Studi Pemanfaatan Sampah Plastik Menjadi Produk dan Jasa Kreatif. Jurnal Sains &Teknologi Lingkungan, 2(1), 21–31. https://doi.org/10.20885/jstl.vol2.iss1.art3
  30. Rietzler, B., Manian, A. P., Rhomberg, D., Bechtold, T., & Pham, T. (2021). Investigation of the decomplexation of polyamide/CaCl2 complex toward a green, nondestructive recovery of polyamide from textile waste. Journal of Applied Polymer Science, 138(40). https://doi.org/10.1002/app.51170
  31. Sarian, A. K., Handermann, A. C., Alan Davis, E., & Adhya, A. (1996). United States Patent (19)
  32. Seval, U. (2021). The bursting strength properties of knitted fabrics containing recycled polyester fiber. Journal of the Textile Institute, 112(12), 1998–2003. https://doi.org/10.1080/00405000.2020.1862490
  33. Sheel, A., & Pant, D. (2019). Chemical Depolymerization of PET Bottles via Glycolysis. In Recycling of Polyethylene Terephthalate Bottles. Elsevier Inc. https://doi.org/10.1016/b978-0-12-811361-5.00004-3
  34. Sheldon, R. A., & Norton, M. (2020). Green chemistry and the plastic pollution challenge: Towards a circular economy. Green Chemistry, 22(19), 6310–6322. https://doi.org/10.1039/d0gc02630a
  35. Stefandl R. (2000). Improved process for recycling and recovery of purified Nylon Polymer. (Patent No. WO0029463)
  36. Subha Pradha, S., & Saranya, K. (2023). Recycling Plastic Waste into Construction Materials for Sustainability. IOP Conference Series: Earth and Environmental Science, 1210(1). https://doi.org/10.1088/1755-1315/1210/1/012016
  37. Teti J. (1972). Process for polymer recovery. (Patent No. US3696058)
  38. Tonsi, G., Maesani, C., Alini, S., Ortenzi, M. A., & Pirola, C. (2023). Nylon recycling processes: a Brief Overview. Chemical Engineering Transactions, 100, 727–732. https://doi.org/10.3303/CET23100122
  39. Valenzuela-Ortega, M., Suitor, J. T., White, M. F. M., Hinchcliffe, T., & Wallace, S. (2023). Microbial upcycling of waste PET to adipic acid. ACS Central Science, 9(11), 2057–2063. https://doi.org/10.1021/acscentsci.3c00414
  40. Werner, A. Z., Clare, R., Mand, T. D., Pardo, I., Ramirez, K. J., Haugen, S. J., Bratti, F., Dexter, G. N., Elmore, J. R., Huenemann, J. D., Peabody, G. L., Johnson, C. W., Rorrer, N. A., Salvachúa, D., Guss, A. M., & Beckham, G. T. (2021). Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to β-ketoadipic acid by Pseudomonas putida KT2440. Metabolic Engineering, 67, 250–261. https://doi.org/10.1016/j.ymben.2021.07.005
  41. Yonata, B., & Rusly Hidayah. (2016). Prosiding Seminar Nasional Kimia dan Pembelajarannya. In Jurusan Kimia FMIPA Universitas Negeri Surabaya

Last update:

No citation recorded.

Last update: 2025-06-24 16:39:06

No citation recorded.