skip to main content

Evaluation of Quicklime Dose, Stirring Speed, and Reaction Time for Coal Mine Acid Water Treatment

1Department Public Health Esa Unggul University, Indonesia

2Public Health Study Program, Faculty of Health Sciences, Esa Unggul University, Indonesia, Indonesia

Received: 8 Jan 2025; Revised: 18 Sep 2025; Accepted: 24 Sep 2025; Available online: 30 Sep 2025; Published: 8 Oct 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract

Background: If not properly managed, coal mining activities can lead to significant damage to the earth's surface. Acid water, often referred to as acid mine drainage, typically forms during both active and inactive mining operations. This study aims to determine the effectiveness of the acid mine drainage treatment process with a quicklime neutralizing agent and was carried out to assess the reuse of acid mine drainage by the community. Methods: The research was carried out by taking samples of 200 liters of acid mine water released from the mining pit. This research utilized experimental methods to determine the neutralizing dose, stirring speed, and stirring time produced from mine acid. Results: The results of the research indicate that the dose of additional lime required is 0.145 grams of quicklime for 1 liter of acid mine water. It can be interpreted that for 1 m3 of wastewater, 0.145 kg of quicklime isrequired. As a result, with a wastewater flow rate of 700 m3/hour, 101.5 kilograms of quicklime is needed per hour. Processing acid mine drainage requires rapid stirring with a minimum speed of 100 rpm by stirring all the quicklime. Conclusion: The mixing process can be optimized by increasing the length of the acid mine drainage flow when lime is added before entering the settling pond. An analysis of the physical parameters revealed that the wastewater met quality standards.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Instrument
Turnnitin Check
Subject
Type Research Instrument
  Download (2MB)    Indexing metadata
Keywords: Mining; Wastewater; Environment; Coal

Article Metrics:

  1. Anekwe, I. M. S. (2023). Bioremediation of acid mine drainage – Review. Alexandria Engineering Journal, 65(15), 1047–1075. https://doi.org/https://doi.org/10.1016/j.aej.2022.09.053
  2. Bandara, T., Xu, J., Potter, I. D., Franks, A., Chathurika, J. B. A. J., & Tang, C. (2020). Mechanisms for the removal of Cd(II) and Cu(II) from aqueous solution and mine water by biochars derived from agricultural wastes. Chemosphere, 254, 126745. https://doi.org/10.1016/j.chemosphere.2020.126745
  3. Eriksson, M., Sandström, K., Carlborg, M., & Broström, M. (2024). Impact of Limestone Surface Impurities on Quicklime Product Quality. Minerals, 14(3), 244. https://doi.org/10.3390/min14030244
  4. Firman. (2021). Analisis Pengaruh Waktu Pengadukan Terhadap Penetralan Asam Menggunakan Batugamping Dengan Metode ABCC. Jurnal Geomine, 9(1), 65–72
  5. Guntoro, W. (2023). Analisis Kebutuhan Kapur Tohor dalam Menetralkan Air Asam Tambang di PT ABC Kalimantan Timur. Bandung Conference Series: Mining Engineering, 3(1), 107–114. https://doi.org/https://doi.org/10.29313/bcsme.v3i1.5713
  6. Hernandi, F. (2021). Kualitas Lingkungan Air Sungai Sekitar Kegiatan Pertambangan Batubara. Buletin Poltanesa, 22(1), 19–24. https://doi.org/https://doi.org/10.51967/tanesa.v22i1.460
  7. IESR. (2019). Indonesia Coal’s Dynamics : Toward A Just Energy Transition
  8. Ismanto, H. (2023). ¬UJI ORGANOLEPTIK KERIPIK UDANG (L. vannamei) HASIL PENGGORENGAN VAKUM. Jurnal AgroSainTa: Widyaiswara Mandiri Membangun Bangsa, 6(2), 53–58. https://doi.org/10.51589/ags.v6i2.3137
  9. Lesbani, A., Ceria Sitompul, S. O., Mohadi, R., & Hidayati, N. (2016). Characterization and Utilization of Calcium Oxide (CaO) Thermally Decomposed from Fish Bones as a Catalyst in the Production of Biodiesel from Waste Cooking Oil. Makara Journal of Technology, 20(3), 121. https://doi.org/10.7454/mst.v20i3.3066
  10. Masindi, V., Foteinis, S., & Chatzisymeon, E. (2022). Co-treatment of acid mine drainage and municipal wastewater effluents: Emphasis on the fate and partitioning of chemical contaminants. Journal of Hazardous Materials, 421, 126677. https://doi.org/10.1016/j.jhazmat.2021.126677
  11. Maulana, R. (2020). Characterization Of Coal Seams in The Arantiga And Seluang Mine Bengkulu Using Proximate Analysis Data. Jurnal Geofisika Eksplorasi, 6(3), 197–204. https://doi.org/https://doi.org/10.23960/jge.v6i3.92
  12. Mosai, A. K., Ndlovu, G., & Tutu, H. (2024). Improving acid mine drainage treatment by combining treatment technologies: A review. Science of The Total Environment, 919, 170806. https://doi.org/10.1016/j.scitotenv.2024.170806
  13. Munawar. (2017). Pengelolaan Air Asam Tambang: Prinsip-prinsip dan Penerapannya (B. Hermawan (ed.)). Universitas Negeri Bengkulu
  14. Natarajan, K. A. (2018). Microbial Aspects of Acid Mine Drainage—Mining Environmental Pollution and Control. Bioteknnologi of Metal, 395–432. https://doi.org/https://doi.org/10.1016/B978-0-12-804022-5.00013-X
  15. Paes, M. X., Puppim de Oliveira, J. A., Mancini, S. D., & Rieradevall, J. (2024). Waste management intervention to boost circular economy and mitigate climate change in cities of developing countries: The case of Brazil. Habitat International, 143, 102990. https://doi.org/10.1016/j.habitatint.2023.102990
  16. Pratiwi, R. A., & Nandiyanto, A. B. D. (2022). How to Read and Interpret UV-VIS Spectrophotometric Results in Determining the Structure of Chemical Compounds. Indonesian Journal of Educational Research and Technology, 2(1), 1–20. https://doi.org/10.17509/ijert.v2i1.35171
  17. Rohit Rathour, V. K. (2019). Treatment of Various Types of Wastewaters Using Microbial Fuel Cell Systems. Microbial Electrochemical Technology, 665–692. https://doi.org/https://doi.org/10.1016/B978-0-444-64052-9.00027-3
  18. Rukmana, B. T. S. (2017). Penanganan Air Asam Tambang Pada Skala Laboratorium Dengan Menggunakan Kapur Tohor Berdasarkan Parameter Ketebalan NAF. Prosiding Seminar Nasional XII “Rekayasa Teknologi Industri Dan Informasi
  19. Said, N. I., & Yudo, S. (2021). Status Kualitas Air di Kolam Bekas Tambang Batubara di Tambang Satui, Kabupaten Tanah Laut, Kalimantan Selatan. Jurnal Teknologi Lingkungan, 22(1), 048–057. https://doi.org/10.29122/jtl.v22i1.3900
  20. Skousen, J. G. (2019). Acid mine drainage formation, control and treatment: Approaches and strategies. The Extractive Industries and Society, 6(1), 241–249. https://doi.org/https://doi.org/10.1016/j.exis.2018.09.008
  21. Surchat, M., Irakoze, M., Hansmann, R., Kantengwa, S.,

Last update:

No citation recorded.

Last update: 2025-10-09 03:33:54

No citation recorded.