skip to main content

Spatiotemporal Local Climate Zone (LCZ) dan Hubungannya dengan Fenomena Urban Heat Island (UHI) di Kawasan Universitas Diponegoro Tembalang

1Master of Geography, University of Indonesia, Indonesia

2Universitas Indonesia, Indonesia

Received: 18 May 2025; Revised: 19 Sep 2025; Accepted: 25 Sep 2025; Available online: 30 Sep 2025; Published: 8 Oct 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract

Transformasi spasial yang pesat akibat ekspansi kampus telah membentuk ulang morfologi kawasan Undip Tembalang dan berpotensi memperkuat efek UHI lokal. Penelitian ini bertujuan mengkaji perubahan spasio-temporal LCZ serta hubungannya dengan LST untuk memahami bagaimana proses Studentifikasi memengaruhi iklim mikro kampus. Analisis dilakukan menggunakan citra resolusi tinggi dari Google Earth Pro dan Landsat 8 (OLI/TIRS) tahun 2015 dan 2024, dengan klasifikasi LCZ berbasis grid 100×100 m serta perhitungan LST menggunakan algoritma split-window. Hasil menunjukkan peningkatan signifikan LCZ3 (padat bertingkat rendah) dari 180.000 m² (4,17%) menjadi 470.000 m² (10,88%) dan kemunculan LCZ4, disertai penurunan luas zona vegetatif (LCZA–LCZB). Suhu permukaan rata-rata naik dari 27,38 °C menjadi 28,00 °C, sementara suhu maksimum harian meningkat tajam dari 32,05 °C menjadi 33,71 °C, menandakan penguatan UHI. Overlay peta menunjukkan LCZ padat (LCZ3–LCZ4–LCZ6) memiliki LST tertinggi (29,04–30,72 °C), sedangkan zona vegetatif (LCZA–LCZG) tetap terendah (23,57–25,35 °C). Korelasi peringkat Spearman menunjukkan hubungan positif kuat antara kepadatan morfologi dan LST (ρ = 0,90 pada 2015 dan ρ = 0,78 pada 2024), menegaskan bahwa peningkatan kepadatan bangunan memperkuat UHI sekaligus menciptakan heterogenitas termal yang lebih tinggi. Penelitian ini menawarkan pendekatan baru LCZ–LST berskala mikro untuk kawasan kampus tropis, serta memberi bukti empiris dan acuan metodologis bagi studi sejenis. Temuan ini menegaskan pentingnya strategi perencanaan spasial kampus yang mengintegrasikan infrastruktur hijau, permukaan permeabel, dan material beralbedo tinggi untuk memitigasi UHI dan meningkatkan kenyamanan termal di kawasan akademik yang mengalami urbanisasi pesat.

 
Fulltext View|Download
Keywords: Local Climate Zone (LCZ), Mitigasi dan Adaptasi UHI, Transformasi Urban, Kawasan Pendidikan Undip, Urban Heat Island (UHI)

Article Metrics:

  1. Akbari, H., & Kolokotsa, D. (2016). Three decades of urban heat islands and mitigation technologies research. Energy and Buildings, 133, 834–842. https://doi.org/10.1016/j.enbuild.2016.09.067
  2. Astuti, S. T., & Nucifera, F. (2021). Identifikasi Local Climate Zone Sebagai Upaya Mitigasi Urban Heat Island di Kota Semarang. Geomedia, 19(1), 54–65. https://journal.uny.ac.id/index.php/geomedia/index
  3. Avdan, U., & Jovanovska, G. (2016). Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. Journal of Sensors, 2016(1), 1480307. https://doi.org/https://doi.org/10.1155/2016/1480307
  4. Chen, Y. C., Chiu, H. W., Su, Y. F., Wu, Y. C., & Cheng, K. S. (2017). Does urbanization increase diurnal land surface temperature variation? Evidence and implications. Landscape and Urban Planning, 157, 247–258. https://doi.org/10.1016/j.landurbplan.2016.06.014
  5. Doan, Q.-V., Kusaka, H., & Ho, Q.-B. (2016). Impact of future urbanization on temperature and thermal comfort index in a developing tropical city: Ho Chi Minh City. Urban Climate, 17, 20–31. https://doi.org/10.1016/j.uclim.2016.04.003
  6. Estoque, R. C., Murayama, Y., & Myint, S. W. (2017). Science of The Total Environment, 577, 349–359
  7. Fong, Chng Saun, Manavvi, Suneja, Priya, Radhakrishnan Shanthi, Ramakreshnan, Logaraj, & Sulaiman, Nik Meriam. (2023). Traits of adaptive outdoor thermal comfort in a tropical urban microclimate. Atmosphere, 14(5), 852. https://doi.org/10.3390/atmos14050852
  8. Grover, A., & Singh, R. B. (2016). Monitoring spatial patterns of land surface temperature and urban heat island for sustainable megacity: A case study of Mumbai, India, using landsat TM data. Environment and Urbanization ASIA, 7(1), 38–54. https://doi.org/10.1177/0975425315619722
  9. Hapsari, M. D., & Pradoto, W. (2013). Perkembangan Permukiman di Sekitar Lingkungan Kampus Undip Tembalang. Jurnal Pembangunan Wilayah Dan Kota, 9, 404–415
  10. Heshmat Mohajer, Hamed Reza, Ding, Lan, Kolokotsa, Dionysia, & Santamouris, Mattheos. (2023). On the thermal environmental quality of typical urban settlement configurations. Buildings, 13(1), 76. https://doi.org/10.3390/buildings13010076
  11. Hong, Chao, Qu, Zhongke, Xiao, Ruizhi, Wang, Zhen, Yang, Yujun, & others. (2024). Vertical thermal environment investigation in different urban zones (LCZ4/LCZ6/LCZA) and heat mitigation evaluation: Field measurements and numerical simulations. Building and Environment, 262, 111840. https://doi.org/10.1016/j.buildenv.2024.111840
  12. Hoseini, P., & Nematinehr, M. (2023). Dormitory neighbourhood: The role of studentification in developing low-quality neighbourhood, case of Babolsar, Iran. International Planning Studies, 28(2), 142–161. https://doi.org/10.1080/13563475.2022.2139667
  13. Kotharkar, R., Bagade, A., & Ramesh, A. (2019). Assessing urban drivers of canopy layer urban heat island: A numerical modeling approach. Landscape and Urban Planning, 190, 103586. https://doi.org/10.1016/j.landurbplan.2019.05.017
  14. Labib, M. S., Wibowo, A., & Shidiq, I. P. A. (2022). LST-based threshold method for detecting UHI in a complex urban landscape. IOP Conference Series: Earth and Environmental Science, 986(1). https://doi.org/10.1088/1755-1315/986/1/012072
  15. Liang, Z., Wang, Y., Huang, J., Wei, F., Wu, S., & others. (2020). Seasonal and diurnal variations in the relationships between urban form and the urban heat island effect. Energies, 13(22), 5909. https://doi.org/10.3390/en13225909
  16. Marhendriyanto. (2003). Pengaruh Kampus Perguruan Tinggi terhadap Perkembangan Kawasan Sekitarnya di Kota Semarang. Program Pascasarjana Pembangunan Wilayah dan Kota, Fakultas Teknik Universitas Diponegoro, Semarang
  17. Prastiwi, S. K. A., & Dewi, S. P. (2021). Analisis Ketersediaan Hunian Mahasiswa Pada Proses Studentifikasi di Kawasan Pendidikan Tinggi Tembalang, Semarang. RIPTEK, 15, 28–42
  18. Ranagalage, M., Dissanayake, D., Murayama, Y., Zhang, X., & Estoque, R. C. (2018). Quantifying surface urban heat island formation in the world heritage tropical mountain city of Sri Lanka. ISPRS International Journal of Geo-Information, 7(9), 341. https://doi.org/10.3390/ijgi7090341
  19. Rasul, A., Balzter, H., & Smith, C. (2017). Remote Sensing, 9(10), 1002
  20. Salvo, F., Tavano, D., & Del Giudice, F. P. (2025). Assessing the impact of studentification on real estate dynamics: Evidence from the University of Calabria. In Green Energy and Technology (Part F573, pp. 191–210). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-031-91895-7_12
  21. Samadikun, B. P. (2014). Dampak Keberadaan Kampus Undip Tembalang terhadap Kondisi Lingkungan Perumahan di Sekitarnya. Program Pascasarjana Universitas Diponegoro
  22. Shanto, A. A., Zobair, A. B., Fahim, B. K., & Rabbee, T. (2025). Urban heat island evaluation: A comprehensive analysis of state-of-the-art approaches in Dhaka City. AIP Conference Proceedings, 3262(1), 020021. https://doi.org/10.1063/5.0247066
  23. Silva, M. T., Margalho, E. da S., Serrão, E. A. de O., de Souza, A. C., Soares, C. de S., & others. (2021). Application of spatial modeling of biophysical variables in an urbanized area in the Amazon: The case of the metropolitan area of Belém-Pará. Revista Brasileira de Meteorologia, 36, e20200063. https://doi.org/10.1590/0102-77863620063
  24. Stewart, I. D., & Oke, T. R. (2012). Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, 93(12), 1879–1900. https://doi.org/10.1175/BAMS-D-11-00019.1
  25. Sulistiawan, U. H., & Dewi, S. P. (2014). Pengaruh Kawasan Pendidikan Tinggi Undip Terhadap Perkembangan Perdagangan dan Jasa di Koridor Jalan Banjarsari Selatan Kecamatan Tembalang. RUANG, 2
  26. Tyagi, Gunjan & Danish Md.. (2025). Reflective building façades: The effect of albedo on outdoor thermal comfort – A case study of low-rise apartments. Nature Environment and Pollution Technology, 24(2), B4247. https://doi.org/10.46488/NEPT.2025.v24i02.B4247
  27. Voogt, J. A., & Oke, T. R. (2003). Thermal remote sensing of urban climates. Progress in Physical Geography, 27(2), 217–229
  28. Wibowo, A., Semedi, J. M., & Salleh, K. O. (2017). Spatial temporal analysis of urban heat hazard on education Area (University of Indonesia). Indonesian Journal of Geography, 49(1), 1–10. https://doi.org/10.22146/ijg.11821
  29. Wibowo, A., Abisha, N. R., Hernina, R., Kusratmoko, E., & Saraswati, R. (2023). Urban Heat Hazard Model Based On Local Climate Zone. International Journal of GEOMATE, 24(103), 96–103. https://doi.org/10.21660/2023.103.g12284
  30. Zhou, S., Zheng, H., Liu, X., Gao, Q., & Xie, J. (2023). Identifying the effects of vegetation on urban surface temperatures based on urban–rural local climate zones in a subtropical metropolis. Remote Sensing, 15(19), 4743. https://doi.org/10.3390/rs15194743

Last update:

No citation recorded.

Last update: 2025-10-09 03:33:50

No citation recorded.