skip to main content

Black Soldier Fly Larval Bioconversion of Fruit and Vegetable Waste: Carbon-Nitrogen Conversion and Estimation of Greenhouse Gas Emissions

Department of Environmental Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, Indonesia 60111, Indonesia

Received: 7 May 2025; Revised: 26 Oct 2025; Accepted: 28 Oct 2025; Available online: 8 Nov 2025; Published: 8 Nov 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract

Fruit and vegetable waste accounts for approximately 36% of total food waste in Indonesia. The accumulation of this waste in landfills contributes to increasing greenhouse gas (GHG) emissions and environmental pollution through leachate production. Treatment using Black Soldier Fly (BSF) larvae offers an efficient and sustainable alternative, with lower GHG emissions compared to composting or anaerobic digestion. This study aimed to evaluate the bioconversion efficiency of BSF larvae in reducing fruit and vegetable waste (specifically cabbage, water spinach, spinach, mustard greens, watermelon, melon, banana, and papaya) by analyzing the transformation of carbon (C) and nitrogen (N) into larval biomass and residue. Substrate compositions were varied with vegetable-to-fruit ratios of 90:10, 80:20, 70:30, and 60:40 (w/w), and larval densities of 1, 2, and 4 larvae/cm² were tested. Results showed that carbon and nitrogen conversion into larval biomass ranged from 7.92–17.59% and 4.96–21.69%, respectively, while conversion into residue ranged from 22.53–63.75% for carbon and 18.12–80.78% for nitrogen. The substrate with a 90:10 vegetable-to-fruit ratio produced the highest conversion efficiency. The values of Approximate Digestibility (AD), Efficiency of Conversion of Digested Food (ECD), and Efficiency of Conversion of Ingested Food (ECI) ranged from 32.44–74.71%, 17.68–42.96%, and 8.09–18.64%, respectively. The larval survival rates reached 95.61%. Furthermore, BSF bioconversion generated the lowest GHG emissions among all compared waste treatment methods, with a value of 102.27 g CO₂ eq/kg of waste. These findings demonstrate the significant potential of BSF larvae in managing fruit and vegetable waste while minimizing environmental impact, providing a foundation for further optimization in sustainable waste valorization systems.

Note: This article has supplementary file(s).

Fulltext View|Download |  Research Materials
Figure 1 BSF Larval Rearing Reactors
Subject
Type Research Materials
  View (1MB)    Indexing metadata
 Research Results
Figure 2 Carbon Content of BSF Larvae
Subject
Type Research Results
  View (93KB)    Indexing metadata
 Research Results
Figure 3 Nitrogen Content of BSF Larvae
Subject
Type Research Results
  View (86KB)    Indexing metadata
 Research Results
Figure 4 Carbon Content of Residue
Subject
Type Research Results
  View (93KB)    Indexing metadata
 Research Results
Figure 5 Nitrogen Content of Residue
Subject
Type Research Results
  View (94KB)    Indexing metadata
 Research Results
Figure 6 Conversion of Substrate Carbon to BSF Larvae Carbon
Subject
Type Research Results
  View (98KB)    Indexing metadata
 Research Results
Figure 7 Conversion of Substrate Carbon to BSF Residue Carbon
Subject
Type Research Results
  View (92KB)    Indexing metadata
 Research Results
Figure 8 Conversion of Substrate Nitrogen to BSF Larvae Nitrogen
Subject
Type Research Results
  View (77KB)    Indexing metadata
 Research Results
Figure 9 Conversion of Substrate Nitrogen to Residue Nitrogen
Subject
Type Research Results
  View (93KB)    Indexing metadata
 Research Results
Figure 10 Approximate Digestibility
Subject
Type Research Results
  View (90KB)    Indexing metadata
 Research Results
Figure 11 Efficiency of Conversion of Digested Food
Subject
Type Research Results
  View (79KB)    Indexing metadata
 Research Results
Figure 12 Efficiency of Conversion of Ingested Food
Subject
Type Research Results
  View (93KB)    Indexing metadata
 Cover Letter
Cover Letter Ursada et al
Subject
Type Cover Letter
  Download (14KB)    Indexing metadata
 Plagiarism screening
TURNITIN Plagiarism Screening Manuscript JIL Ursada et al.pdf
Subject
Type Plagiarism screening
  Download (4MB)    Indexing metadata
 Proposed Potential Reviewer
Proposed Potential Reviewer
Subject
Type Proposed Potential Reviewer
  Download (15KB)    Indexing metadata
Keywords: Carbon; Nitrogen; Black soldier fly larvae; Larval density; Bioconversion
Funding: Indonesian Endowment Fund for Education (LPDP)

Article Metrics:

  1. Adams, R. C., Bennett, F. M., Dixon, J. K., Lough, R. C., Maclean, F. S., & Martin, G. I. (1951). The utilization of organic wastes in N.Z. New Zealand Engineering, 6(11), 396–424. https://search.informit.org/doi/10.3316/informit.359233295091848
  2. Agustin, H., Warid, W., & Musadik, I. M. (2023). Kandungan Nutrisi Kasgot Larva Lalat Tentara Hitam (Hermetia illucensi) Sebagai Pupuk Organik. Jurnal Ilmu-Ilmu Pertanian Indonesia, 25(1), 12–18. https://doi.org/10.31186/jipi.25.1.12-18
  3. Akbar, R. A. (2016). Pengaruh Paparan CH4 dan H2S Terhadap Keluhan Gangguan Pernapasan Pemulung di TPA Mrican Kabupaten Ponorogo. Journal of Industrial Hygiene and Occupational Health, 1(1), 1–14. https://doi.org/10.21111/jihoh.v1i1.603
  4. Aldis, R. E., Muhlisin, M., Zuprizal, Z., Sasongko, H., Hanim, C., & Anas, M. Al. (2024). Black soldier fly larvae meal supplementation in a low protein diet reduced performance, but improved nitrogen efficiency and intestinal morphology of duck. Animal Bioscience, 37(4), 678–688. https://doi.org/10.5713/ab.23.0259
  5. Amin, U. K., Lando, A. T., & Djamaluddin, I. (2024). Potential of Black Soldier Fly Larvae in Reduction Various Types Organic Waste. Ecological Engineering & Environmental Technology, 25(9), 190–201. https://doi.org/10.12912/27197050/190639
  6. Amri, N. N., Ardiasani, S., Elvira, N., Putri, L. S. E., & Sahari, B. (2023). Mortality, Development and Nutrient Content of Black Soldier Fly Larvae (Hermetia illucens L.) Maintained on Different Types of Household Organic Waste. IOP Conference Series: Earth and Environmental Science, 1220(1), 012018. https://doi.org/10.1088/1755-1315/1220/1/012018
  7. Andari, G., Ginting, N. M., & Nurdiana, R. (2021). Black Soldier Fly Larvae (Hermetia illucens) as a Waste Reduction Agent and an Alternative Livestock Feed. Jurnal Ilmiah Peternakan Terpadu, 9(3), 246. https://doi.org/10.23960/jipt.v9i3.p246-252
  8. Barragan‐Fonseca, K. B., Dicke, M., & van Loon, J. J. A. (2018). Influence of larval density and dietary nutrient concentration on performance, body protein, and fat contents of black soldier fly larvae ( Hermetia illucens ). Entomologia Experimentalis et Applicata, 166(9), 761–770. https://doi.org/10.1111/eea.12716
  9. Barrera, J., Salinas, E. R., Rivera, A. R., Malalis, J. S., Bagaforo, Engr. R. O., Araya, J. P., & Sulay, Dr. D. L. D. (2023). Productivity and Nutritive Value of Black Soldier Fly (Hermetia illucens) Larvae Fed with Different Waste Substrates. International Journal of Multidisciplinary: Applied Business and Education Research, 4(2), 588–599. https://doi.org/10.11594/ijmaber.04.02.25
  10. Beesigamukama, D., Mochoge, B., Korir, N. K., K.M. Fiaboe, K., Nakimbugwe, D., Khamis, F. M., Subramanian, S., Wangu, M. M., Dubois, T., Ekesi, S., & Tanga, C. M. (2021). Low-cost technology for recycling agro-industrial waste into nutrient-rich organic fertilizer using black soldier fly. Waste Management, 119, 183–194. https://doi.org/10.1016/j.wasman.2020.09.043
  11. Carpentier, J., Martin, C., Luttenschlager, H., Deville, N., Ferrara, D., Purcaro, G., Blecker, C., Francis, F., & Caparros Megido, R. (2024). Common soluble carbohydrates affect the growth, survival, and fatty acid profile of black soldier fly larvae Hermetia illucens (Stratiomyidae). Scientific Reports, 14(1), 28157. https://doi.org/10.1038/s41598-024-75730-5
  12. Cheng, J. Y. K., Chiu, S. L. H., & Lo, I. M. C. (2017). Effects of moisture content of food waste on residue separation, larval growth and larval survival in black soldier fly bioconversion. Waste Management, 67, 315–323. https://doi.org/10.1016/j.wasman.2017.05.046
  13. Dortmans, B. M. A., Egger, J., Diener, S., & Zurbrügg, C. (2021). Black Soldier Fly Biowaste Processing-A Step-by-Step Guide, 2 nd Edition. In Bibliographic
  14. EPA. (1978). EPA-NERL: 351.3 Nitrogen, Kjeldahl, Total (Colorimetric; Titrimetric; Potentiometric). U.S. Evironmental Protection Agency
  15. EPA. (2024). Emission Factors for Greenhouse Gas Inventories. U.S. Environmental Protection Agency
  16. Ermolaev, E., Lalander, C., & Vinnerås, B. (2019). Greenhouse gas emissions from small-scale fly larvae composting with Hermetia illucens. Waste Management, 96, 65–74. https://doi.org/10.1016/j.wasman.2019.07.011
  17. Froonickx, L., Berrens, S., Broeckx, L., & Van Miert, S. (2023). The potential of black soldier fly to recycle nitrogen from biowaste. Current Opinion in Green and Sustainable Chemistry, 44, 100864. https://doi.org/10.1016/j.cogsc.2023.100864
  18. Gold, M., Tomberlin, J. K., Diener, S., Zurbrügg, C., & Mathys, A. (2018). Decomposition of biowaste macronutrients, microbes, and chemicals in black soldier fly larval treatment: A review. Waste Management, 82, 302–318. https://doi.org/10.1016/j.wasman.2018.10.022
  19. IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme (S. Eggleston, L. Buendia, K. Miwa, T. Ngara, & K. Tanabe, Eds.; Vol. 1). IGES, Japan
  20. Jin, N., Liu, Y., Zhang, S., Sun, S., Wu, M., Dong, X., Tong, H., Xu, J., Zhou, H., Guan, S., & Xu, W. (2022). C/N-Dependent Element Bioconversion Efficiency and Antimicrobial Protein Expression in Food Waste Treatment by Black Soldier Fly Larvae. International Journal of Molecular Sciences, 23(9), 5036. https://doi.org/10.3390/ijms23095036
  21. Kementerian Lingkungan Hidup dan Kehutanan Sistem Informasi Pengelolaan Sampah Nasional. (2024, July 20). Capaian Kinerja Pengelolaan Sampah. https://sipsn.menlhk.go.id/sipsn/
  22. Kementerian Perencanaan Pembangunan Nasional. (2021). Study Report Food Loss and Waste in Indonesia: Supporting the Implementation of Circular Economy and Low Carbon Development
  23. Komakech, A. J., Rubagumya, I., Kizito, S. S., Zziwa, A., Kabenge, I., & Menya, E. (2023). Quantifying greenhouse gas emissions from three fruit and vegetable waste management technologies using the static chamber. https://doi.org/10.21203/rs.3.rs-3312640/v1
  24. Lalander, C., Diener, S., Zurbrügg, C., & Vinnerås, B. (2019). Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens). Journal of Cleaner Production, 208, 211–219. https://doi.org/10.1016/j.jclepro.2018.10.017
  25. Lievens, S., Poma, G., De Smet, J., Van Campenhout, L., Covaci, A., & Van Der Borght, M. (2021). Chemical Safety of Black Soldier Fly Larvae (Hermetia Illucens), Knowledge Gaps and Recommendations for Future Research: a Critical Review. Journal of Insects as Food and Feed, 7(4), 383–396. https://doi.org/10.3920/JIFF2020.0081
  26. Lu, Y., Zhang, S., Sun, S., Wu, M., Bao, Y., Tong, H., Ren, M., Jin, N., Xu, J., Zhou, H., & Xu, W. (2021). Effects of Different Nitrogen Sources and Ratios to Carbon on Larval Development and Bioconversion Efficiency in Food Waste Treatment by Black Soldier Fly Larvae (Hermetia illucens). Insects, 12(6), 507. https://doi.org/10.3390/insects12060507
  27. Lutviyani, A., Firdausi, F. F., & Hanim, H. (2022). Tinjauan Limbah Makanan Terhadap Lingkungan dalam Perspektif Islam dan Sains. Prosiding Konferensi Integrasi Interkoneksi Islam Dan Sains 4, 49–53
  28. Mahmood, S., Zurbrügg, C., Tabinda, A. B., Ali, A., & Ashraf, A. (2021). Sustainable Waste Management at Household Level with Black Soldier Fly Larvae (Hermetia illucens). Sustainability, 13(17), 9722. https://doi.org/10.3390/su13179722
  29. Meneguz, M., Schiavone, A., Gai, F., Dama, A., Lussiana, C., Renna, M., & Gasco, L. (2018). Effect of rearing substrate on growth performance, waste reduction efficiency and chemical composition of black soldier fly ( Hermetia illucens ) larvae. Journal of the Science of Food and Agriculture, 98(15), 5776–5784. https://doi.org/10.1002/jsfa.9127
  30. Mertenat, A., Diener, S., & Zurbrügg, C. (2019). Black Soldier Fly biowaste treatment – Assessment of global warming potential. Waste Management, 84, 173–181. https://doi.org/10.1016/j.wasman.2018.11.040
  31. Oemar, T., Purwaningrum, P., Ruhiyat, R., & Ashardiono, F. (2023). Potential of Black Soldier Fly (BSF) in Reducing Municipal Food Loss and Waste (FLW) at Taman Sari District, West Jakarta. Indonesian Journal of Urban and Environmental Technology, 132–144. https://doi.org/10.25105/urbanenvirotech.v6i2.16932
  32. Pang, W., Hou, D., Chen, J., Nowar, E. E., Li, Z., Hu, R., Tomberlin, J. K., Yu, Z., Li, Q., & Wang, S. (2020). Reducing greenhouse gas emissions and enhancing carbon and nitrogen conversion in food wastes by the black soldier fly. Journal of Environmental Management, 260, 110066. https://doi.org/10.1016/j.jenvman.2020.110066
  33. Pang, W., Hou, D., Nowar, E. E., Chen, H., Zhang, J., Zhang, G., Li, Q., & Wang, S. (2020). The influence on carbon, nitrogen recycling, and greenhouse gas emissions under different C/N ratios by black soldier fly. Environmental Science and Pollution Research, 27(34), 42767–42777. https://doi.org/10.1007/s11356-020-09909-4
  34. Parodi, A., Yao, Q., Gerrits, W. J. J., Mishyna, M., Lakemond, C. M. M., Oonincx, D. G. A. B., & Van Loon, J. J. A. (2022). Upgrading ammonia-nitrogen from manure into body proteins in black soldier fly larvae. Resources, Conservation and Recycling, 182, 106343. https://doi.org/10.1016/j.resconrec.2022.106343
  35. Parra Paz, A. S., Carrejo, N. S., & Gómez Rodríguez, C. H. (2015). Effects of Larval Density and Feeding Rates on the Bioconversion of Vegetable Waste Using Black Soldier Fly Larvae Hermetia illucens (L.), (Diptera: Stratiomyidae). Waste and Biomass Valorization, 6(6), 1059–1065. https://doi.org/10.1007/s12649-015-9418-8
  36. Parra Paz, A. S., Carrejo, N. S., & Rodríguez, C. H. (2015). Effects of Larval Density and Feeding Rates on the Bioconversion of Vegetable Waste Using Black Soldier Fly Larvae Hermetia illucens (L.), (Diptera: Stratiomyidae). Waste and Biomass Valorization, 6(6), 1059–1065. https://doi.org/10.1007/s12649-015-9418-8
  37. Permana, A. D., & Putra, J. E. N. R. E. (2018). Growth of Black Soldier Fly (Hermetia illucens) Larvae Fed on Spent Coffee Ground. IOP Conference Series: Earth and Environmental Science, 187(1), 012070. https://doi.org/10.1088/1755-1315/187/1/012070
  38. Prahastuti, S. (2011). Konsumsi Fruktosa Berlebihan Dapat Berdampak Buruk Bagi Kesehatan Manusia. Maranatha Journal of Medicine and Health, 10(2)
  39. Puger, I. G. N. (2018). Sampah Organik, Kompos, Pemanasan Global, dan Penanaman Aglaonema di Pekarangan. Agro Bali (Agricultural Journal), 1, 127–136
  40. Purnamasari, D. K., Erwan, Syamsuhaidi, Sumiati, Wiryawan, I. K. G., Maslami, V., & Kurniyati. (2023). Kandungan Nutrisi Setiap Fase Siklus Black Soldier Fly (BSF) yang Dibudidaya Menggunakan Sampah Organik. Jurnal Ilmu Dan Teknologi Peternakan Indonesia (JITPI) Indonesian Journal of Animal Science and Technology), 9(2), 111–121. https://doi.org/10.29303/jitpi.v9i2.182
  41. Purnamasari, L., Muhlison, W., & Sucipto, I. (2021). Biokonversi limbah ampas tahu dan limbah sayur dengan menggunakan agen larva Black Soldier Fly (Hermetia illucent). 105–111. https://doi.org/10.25047/animpro.2021.13
  42. Purnomo, B. C., Nurjazuli, N., & Suhartono, S. (2021). Pengaruh Luas Penampang Wadah Terhadap Besarnya Reduksi Volume Sampah Organik Rumah Tangga Menggunakan Larva Lalat Bsf (Black Soldier Fly). Jurnal Sehat Mandiri, 16(2), 99–108. https://doi.org/10.33761/jsm.v16i2.474
  43. Putra, Y., & Ariesmayana, A. (2020). Efektifitas Penguraian Sampah Organik Menggunakan Maggot (BSF) di Pasar Rau Trade Center. Jurnal Lingkungan Dan Sumberdaya Alam (JURNALIS), 3(1). https://ejournal.lppm-unbaja.ac.id/index.php/jls/article/view/888
  44. Rofi, D. Y., Auvaria, S. W., Nengse, S., Oktorina, S., & Yusrianti, Y. (2021). Modifikasi Pakan Larva Black Soldier Fly (Hermetia illucens) sebagai Upaya Percepatan Reduksi Sampah Buah dan Sayuran. Jurnal Teknologi Lingkungan, 22(1), 130–137. https://doi.org/10.29122/jtl.v22i1.4297
  45. Salam, M., Shahzadi, A., Zheng, H., Alam, F., Nabi, G., Dezhi, S., Ullah, W., Ammara, S., Ali, N., & Bilal, M. (2022). Effect of different environmental conditions on the growth and development of Black Soldier Fly Larvae and its utilization in solid waste management and pollution mitigation. Environmental Technology & Innovation, 28, 102649. https://doi.org/10.1016/j.eti.2022.102649
  46. Saputra, R. F., & Nuryanti. (2018). Studi Kelayakan Kadar Air, Abu, Protein dan Tembaga (Cu) Pada Sayuran di Pasar Sunter Jakarta Utara sebagai Bahan Suplemen Makanan. Indonesia Natural Research Pharmaceutical Journal, 3(2), 150–161
  47. Saragi, E. S. (2015). Penentuan Optimal Feeding Rate Larva Black Soldier Fly (Hermetia illlucens) dalam Mereduksi Sampah Organik Pasar. Institut Teknology Sepuluh Nopember
  48. Sarpong, D., Oduro-Kwarteng, S., Gyasi, S. F., Buamah, R., Donkor, E., Awuah, E., & Baah, M. K. (2019). Biodegradation by composting of municipal organic solid waste into organic fertilizer using the black soldier fly (Hermetia illucens) (Diptera: Stratiomyidae) larvae. International Journal of Recycling of Organic Waste in Agriculture, 8(S1), 45–54. https://doi.org/10.1007/s40093-019-0268-4
  49. Triwandani, A., Purwaningrum, P., & Ruhiyat, R. (2023). Efektivitas Penguraian Sampah Organik Pasar Menggunakan Larva Black Soldier Fly. Jurnal Serambi Engineering, 8(2), 5474–5484. https://doi.org/10.32672/jse.v8i2.6003
  50. U.S. Department of Agriculture. (2024, August 16). FoodData Central. https://fdc.nal.usda.gov/
  51. Waldbauer, G. P. (1968). The Consumption and Utilization of Food by Insects (pp. 229–288). https://doi.org/10.1016/S0065-2806(08)60230-1
  52. Wardhana, A. H. (2017). Black Soldier Fly (Hermetia illucens) as an Alternative Protein Source for Animal Feed. Indonesian Bulletin of Animal and Veterinary Sciences, 26(2), 069. https://doi.org/10.14334/wartazoa.v26i2.1327

Last update:

No citation recorded.

Last update: 2025-11-08 10:50:40

No citation recorded.