Pengaruh pemberian nano daun kelor (moringa oleifera) terhadap kadar mineral serum dan tulang pada tikus sprague dawley jantan tumbuh

*Syahrial Syahrial -  Departmen Gizi, Fakultas Ekologi Manusia, Institut Pertanian Bogor, Indonesia
Rimbawan Rimbawan -  Departmen Gizi, Fakultas Ekologi Manusia, Institut Pertanian Bogor, Indonesia
Evy Damayanthi -  Departmen Gizi, Fakultas Ekologi Manusia, Institut Pertanian Bogor, Indonesia
Dewi Apri Astuti -  Departemen Ilmu dan Teknologi Pangan, Fakultas Peternakan, Institut Pertanian Bogor, Indonesia
Pipih Suptijah -  Fakultas Kesehatan Masyarakat, Universitas Andalas, Indonesia
Received: 30 Aug 2018; Published: 14 Jun 2019.
Open Access
Citation Format:
Article Info
Section: Articles
Language: EN
Full Text:
Statistics: 431 480
Abstract

Background: One of the important minerals for growth is calcium to build new bone. Moringa oleifera has been known as high nutritional content and bioactive compound tree that could act as antioxidant and improved several diseases like diabetes, arthritis, cardiovascular. Phytochemical analyses have shown that Moringa oleifera contain of high macro minerals like calcium, potasium, magnesium, and phosphor. Several previous studies have shown that mineral nanoparticle have higher bioavailability than natural compounds..

Objectives: The purpose of this study was to analyze the effect of moringa oleifera nanoparticle leaf on mineral serum and bone at growth stage of Sprague Dawley male rats.

Methods: In this study, the pre and post controlled group design and complete random design was used. The subjects were 27 growing male Sprague dawley rats aged 2 month were devided into three group which received standard feed contain CaCO3 (control group), intervention feed contained 450nm and 750nm nano Moringa oleifera for 60 days. The data of the experiment was analyzed by paired T-test and Duncan test at 95% confidence level.

Results: The result showed that there was no significance different for both of intervention group for mineral serum and fermur bone. While for the tibia bone, the result showed that the calcium, phosphor and magnesium were significantly increase (p<0.05). The intervention group received 450nm showed more effective improvement of magnesium level (p<0.05) than intervention group received 750nm.

Conclusion: The intervention of moringa oleifera nanoparticle leaf had a positive effect in decreasing serum and bone mineral levels in male rats. There were significant increased at magnesium level measured in tibia bones after intervention, with higher increasing at group received 450nm nanoparticle.

Keywords
Moringa oleifera; nanoparticle; bone mineral level; serum mineral level

Article Metrics:

  1. Irnani H, Sinaga T. Pengaruh pendidikan gizi terhadap pengetahuan, praktik gizi seimbang dan status gizi pada anak sekolah dasar. J Gizi Indones. 2017;6(1):58-64.
  2. Nuryani, Rahmawati. Kebiasaan jajan berhubungan dengan status gizi siswa anak sekolah di Kabupaten Gorontalo. J Gizi Indones. 2018;6(2):114-22.
  3. Komariah A, Alamsyah N. Pengaruh pemberian nano kalsium dari eksoskeleton kepiting bakau (Scylla sp.) selama masa kebuntingan dan laktasi terhadap kekerasan gigi tikus (F1). Seminar Nasional XII Pendidikan Biologi 2015: Prodi Pendidikan Biologi FKIP UNS. Hal 948-952.
  4. Dewi NPPA, Susanto H, Rosidi A. Hubungan tingkat kecukupan zat gizi, lean body mass, dan aktivitas fisik dengan kepadatan tulang pada mahasiswa universitas udayana denpasar. J Gizi Indones. 2016;4(2):96 - 101.
  5. Amir LR, Suniarti DF, Utami S, Abbas B. Chitosan as a potential osteogenic factor compared with dexamethasone in cultured macaque dental pulp stromal cells. Cell Tissue Res. 2014;358(2):407-15.
  6. Almatsier S. Prinsip Dasar Ilmu Gizi. Jakarta: PT. Gramedia Pustaka Utama; 2009.
  7. Anwar F, Bhanger MI. Analytical Characterization of Moringa oleifera Seed Oil Grown in Temperate Regions of Pakistan. J Agric Food Chem. 2003;51(22):6558-63.
  8. Singh BN, Singh BR, Singh RL, Prakash D, Dhakarey R, Upadhyay G, et al. Oxidative DNA damage protective activity, antioxidant and anti-quorum sensing potentials of Moringa oleifera. Food Chem Toxicol. 2009;47(6):1109-16.
  9. Ndong M, Uehara M, Katsumata S-i, Suzuki K. Effects of Oral Administration of Moringa oleifera Lam on Glucose Tolerance in Goto-Kakizaki and Wistar Rats. J Clin Biochem Nutr. 2007;40(3):229-33.
  10. Verma AR, Vijayakumar M, Mathela CS, Rao CV. In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food Chem Toxicol. 2009;47(9):2196-201.
  11. Gopalakrishnan L, Doriya K, Kumar DS. Moringa oleifera: A review on nutritive importance and its medicinal application. Food Sci Hum Wellness. 2016;5(2):49-56.
  12. Chumark P, Khunawat P, Sanvarinda Y, Phornchirasilp S, Morales NP, Phivthong-ngam L, et al. The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. leaves. J Ethnopharmacol. 2008;116(3):439-46.
  13. Oyeyinka AT, Oyeyinka SA. Moringa oleifera as a food fortificant: Recent trends and prospects. J Saudi Soc Agr Sci. 2018;17(2):27-36.
  14. Vongsak B, Sithisarn P, Gritsanapan W. HPLC quantitative analysis of three major antioxidative components of Moringa oleifera leaf extracts. Planta Med. 2012;78(11):15.
  15. Patel C, Rangrez A, Parikh P. The anti-osteoporotic effect of Moringa oliefera on osteoblastic cells: SaOS 2. Int J Pharm Biol Sci. 2013;5(2):10 - 7.
  16. Ordzhonikidze CG, Ramaiyya LK, Egorova EM, Rubanovich AV. Genotoxic effects of silver nanoparticles on mice in vivo. Acta Naturae. 2009;1(3):99-101.
  17. Faedmaleki F, Shirazi FH, Salarian A-A, Ashtiani HA, Rastegar H. Toxicity effect of silver nanoparticles on mice liver primary cell culture and HepG(2) cell line. Iran J Pharm Res. 2014;13(1):235-42.
  18. Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010;28(11):580-8.
  19. Gao H, Chen H, Chen W, Tao F, Zheng Y, Jiang Y, et al. Effect of nanometer pearl powder on calcium absorption and utilization in rats. Food Chem. 2008;109(3):493-8.
  20. Suptijah P, Jacoeb AM, Deviyanti N. Karakterisasi dan bioavabilitas nano kalsium cangkang udang vanamei (Litopenaeus vanamei). J Akuntika. 2012;3(1):63-73.
  21. Trilaksani W, Salamah E, Nabil M. Pemanfaatan limbah tulang ikan tuna (Thunnus sp.) sebagai sumbar kalsium dengan metode hidrolisis protein. Buletin Teknologi Hasil Perikanan. 2006;9(2):34-45.
  22. Purwaningsih SP, dan Khoerunisa. Isolasi dan karakterisasi nano kalsium dari cangkang kijing lokal (Pilsbryconcha Exelis) dengan metode presipitasi. Jurusan teknik hasil perikanan Institut Pertanian Bogor. Bogor: Institut Pertanian Bogor. 2012.
  23. Toba Y, Masuyama R, Kato K, Takada Y, Aoe S, Suzuki K. Effect of dietary magnesium level on calcium abasorption in growing male rats. Nutr Res. 1999;19(5):783-93.
  24. Dorinha MSS, Vitti E, Kebreab E. Phospaharus and calcium nutrition metabolism in: phosparus utilization ang requirement in farm animal. Wallingford, Oxfordshire, UK: CAB International; 2010.
  25. Roberfroid MB. Inuline-type fructans food ingredient. Washington (US): CRC. 2005
  26. Bronner F, Pansu D. Nutritional Aspects of Calcium Absorption. J Nutr. 1999;129(1):9-12.
  27. Cashman KD. Calcium intake, calcium bioavailability and bone health. Br J Nutr. 2002;87(S2):S169-S77.
  28. Tongchan PP, S. ; Niyomwas, S. ; Thongraung, C. Effect of calcium compound obtained from fish by-product on calcium metabolism in rats. Asian J Food Agro Ind. Bangkok2009. p. 669-76
  29. Viguet-Carrin S, Hoppler M, Membrez Scalfo F, Vuichoud J, Vigo M, Offord EA, et al. Peak bone strength is influenced by calcium intake in growing rats. Bone. 2014;68:85-91.