skip to main content

Exploring rice varietal effects on triglyceride/high density lipoprotein ratio in hyperlipidemia-induced wistar rats

1Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Semarang, Central Java, Indonesia

2Center of Nutrition Research, Universitas Diponegoro, Semarang, Central Java, Indonesia

3Department of Epidemiology and Preventive Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan

4 School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan

View all affiliations
Received: 17 May 2024; Revised: 3 Jun 2025; Accepted: 3 Jun 2025; Available online: 4 Jun 2025; Published: 4 Jun 2025.

Citation Format:
Abstract

Background: Excessive intake of white rice has been associated with elevated triglyceride (TG) levels and decreased high density lipoprotein (HDL) cholesterol concentrations. Conversely, black and red rice varieties have demonstrated favorable impacts on lipid metabolism. However, despite these benefits, their palatability and texture are often met with aversion by consumers. Consequently, it is imperative to investigate rice blends that are both well-received by individuals and exhibit pronounced efficacy in reducing the TG/HDL ratio.

Objective: To investigate the differential effects on the TG/HDL ratio in rats administered different combinations of white, red, and black rice.

Methods: This research follows a true experimental design incorporating pre- and post-tests with a control group. Thirty rats were initially fed a hyperlipidemic diet for 14 days. Subsequently, the rats were subjected to interventions involving different rice combinations for a duration of 28 days. These combinations included K(+) (positive control), P1 (100% white rice), P2 (21 g red and 4 g white rice), P3 (16 g black and 4 g white rice), and P4 (8 g black, 8 g red, and 4 g white rice). Triglyceride and HDL levels were quantified using the GPO-PAP and CHOD-PAP methods, respectively. Statistical analysis was performed utilizing ANOVA tests followed by LSD post-hoc tests for comparison.

Results: Triglycerides decrease in P4 (-51.04±0.72) was the highest, followed by P3 (47.18±0.51), P2 (-34.60±1.07), P1 (-17.03±1, 06). Cholesterol HDL increase in P4 (49.36±1.68) was the highest, followed by P3 (42.71±0.41), P2 (38.09±0.76), P1 (30.64±0.90). The TG/HDL ratio in P1, P2, P3, and P4 were 0.21±0.092, -2.12±0.164, -2.45±0.123, -2.82±0.148, -3.18±0.371, respectively. The rice combination intervention had a significant decreased on the TG/HDL ratio (p=0.000).

Conclusion: The intervention involving rice combinations resulted in a greater reduction in the TG/HDL ratio compared to the consumption of white rice alone. Among the various combinations tested, the combination of white, red, and black rice demonstrated the most significant reduction in the triglyceride to HDL-cholesterol (TG/HDL) ratio.

Fulltext View|Download
Keywords: black rice; HDL; red rice; triglyceride; white rice

Article Metrics:

  1. Fenty F, A W, DM V, P H. Metabolic Syndrome Among Adults In Rural Areas (Sindrom Metabolik pada Dewasa di Daerah Pedesaan). Indonesian J. Clin. Pathol. Med Lab. 2018;22(3):254. DOI: https://doi.org/10.24293/ijcpml.v22i3.1241
  2. Syahrullah RR, Assa Y, Tiho M. Gambaran Kadar High Density Lipoprotein Darah pada Laki-laki Berusia 40-59 Tahun dengan Indeks Massa Tubuh ≥23 kg/m2. J e-Biomedik. 2013;1(1):59–61. DOI: https://doi.org/10.35790/ebm.v1i1.1161
  3. Nashriana Jufri N, Wirjatmadi B, Adriani M. Combined Food (Bekatul dan Lemak) Menurunkan Kadar Kolesterol Total, Trigliserida, dan LDL pada Tikus Galur Wistar. J Kedokt Brawijaya. 2015;28(3):208–12. DOI: 10.21776/ub.jkb.2015.028.03.8
  4. PERKENI. Pedoman Pengelolaan Dislipidemi di Indonesia 2019. PB Perkeni. 2019;9
  5. Kemenkes RI. Riset Kesehatan Dasar. Jakarta; 2013
  6. Kamso S, Purwantyastuti P, Lubis DU, Juwita R, Robbi YK, Besral B. Prevalensi dan Determinan Sindrom Metabolik pada Kelompok Eksekutif di Jakarta dan Sekitarnya. Kesmas Natl Public Heal J. 2011;6(2):85. DOI: https://doi.org/10.21109/kesmas.v6i2.110
  7. Afifah YN, Sulchan M, Nissa C. Rasio Trigliserida/High Density Lipoprotein-Cholesterol pada Remaja Stunted Obesity 15-18 Tahun di Kota Semarang. Journal of Nutrition College [Online]. 2017;6(2):172-9 DOI: https://doi.org/10.14710/jnc.v6i2.16907
  8. Sung KC, Reaven G, Kim S. Ability of the plasma concentration ratio of triglyceride/high-density lipoprotein cholesterol to identify increased cardio-metabolic risk in an east asian population. Diabetes Res Clin Pract [Internet]. 2014;105(1):96–101. DOI: http://dx.doi.org/10.1016/j.diabres.2014.04.021
  9. Chaudhari PR, Tamrakar N, Singh L, Tandon A, Sharma D. Rice nutritional and medicinal properties : A review article. J Pharmacogn Phytochem. 2018;7(2):150–6
  10. Saragih B, Maria NN, Saragih B. Nutritional , functional properties , glycemic index and glycemic load of indigenous rice from North and East Borneo. Food Research. 2019;3:537–45. DOI: https://doi.org/10.26656/fr.2017.3(5).035
  11. Dong F, Howard AG, Herring AH, Popkin BM, Gordon-Larsen P. White Rice Intake Varies in Its Association with Metabolic Markers of Diabetes and Dyslipidemia Across Region among Chinese Adults. Ann Nutr Metab. 2015;66(4):209-18. DOI: https://doi.org/10.1159/000430504
  12. Della Pepa G, Vetrani C, Vitale M, Riccardi G. Wholegrain Intake and Risk of Type 2 Diabetes: Evidence from Epidemiological and Intervention Studies. Nutrients. 2018 Sep 12;10(9):1288. DOI: https://doi.org/10.3390/nu10091288
  13. Hu E A, Pan A, Malik V, Sun Q. White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. BMJ: 2012; 344 :e1454 DOI: https://doi.org/10.1136/bmj.e1454
  14. Di Stasi SL, MacLeod TD, Winters JD, Binder-Macleod SA. Effects of statins on skeletal muscle: a perspective for physical therapists. Phys Ther. 2010 Oct;90(10):1530-42. DOI: https://doi.org/10.2522/ptj.20090251
  15. Strom BL, Schinnar R, Karlawish J. Statin Therapy and Risk of Acute Memory Impairment. HHS Public Access. 2015;175(8):1399–405. DOI: https://doi.org/10.1001/jamainternmed.2015.2092
  16. Yu-Ping Huang, Hsi-Mei Lai. Bioactive compounds and antioxidative activity of colored rice bran. Journal of Food and Drug Analysis.2016:24(3). DOI: https://doi.org/10.1016/j.jfda.2016.01.004
  17. Tantipaiboonwong P, Pintha K, Chaiwangyen W, Chewonarin T, Pangjit K, Chumphukam O, et al. Anti-hyperglycaemic and anti-hyperlipidaemic effects of black and red rice in streptozotocin-induced diabetic rats. ScienceAsia. 2017;43(5):281–8. DOI: https://doi.org/10.2306/scienceasia1513-1874.2017.43.281
  18. Nurhidajah, Astuti R, Nurrahman. Black rice potential in HDL and LDL profile in sprague dawley rat with high cholesterol diet. IOP Conf Ser Earth Environ Sci. 2019;292(1):0–7. DOI: https://doi.org/10.1088/1755-1315/292/1/012019
  19. Yuniarsih ET. Potensi Pengembangan Beras Merah di Sulawesi Selatan. Bul Disem Teknol Pertan. 2019;1(1). https://repository.pertanian.go.id/handle/123456789/8598
  20. Abdullah B. Peningkatan Kadar Antosianin Beras Merah dan Beras Hitam Melalui Biofortifikasi / Increasing Anthocyanin of Red and Black Rice through Biofortification. J Penelit dan Pengemb Pertan. 2017;36(2):91. DOI: https://doi.org/10.21082/jp3.v36n2.2017.p91-98
  21. Sompong R, Siebenhandl-Ehn S, Linsberger-Martin G, Berghofer E. Physicochemical and antioxidative properties of red and black rice varieties from Thailand, China and Sri Lanka. Food Chem. 2011 Jan;124(1):132–40. DOI: https://doi.org/10.1016/j.foodchem.2010.05.115
  22. Carcea M. Value of wholegrain rice in a healthy human nutrition. Agric. 2021;11(8). DOI: https://doi.org/10.3390/agriculture11080720
  23. Guo H, Liu G, Zhong R, Wang Y, Wang D, Xia M. Cyanidin-3-O-β-glucoside regulates fatty acid metabolism via an AMP-activated protein kinase-dependent signaling pathway in human HepG2 cells. Lipids Health Dis [Internet]. 2012;11(1):10. DOI: https://doi.org/10.1186/1476-511X-11-10
  24. Fairudz A, Nisa Berawi K. Pengaruh Serat Pangan Terhadap Kadar Kolesterol Penderita Overweight. J Majority. 2015;4(8):121–6. http://repository.lppm.unila.ac.id/id/eprint/1390
  25. Qin Y, Xia M, Ma J, Hao Y, Liu J, Mou H, Cao L, Ling W. Anthocyanin supplementation improves serum LDL- and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects. Am J Clin Nutr. 2009;90(3):485–92. DOI: https://doi.org/10.3945/ajcn.2009.27814
  26. Wei X, Wang D, Yang Y, Xia M, Li D, Li G, et al. Cyanidin-3-O-β-glucoside improves obesity and triglyceride metabolism in KK-Ay mice by regulating lipoprotein lipase activity. J Sci Food Agric. 2011;91(6):1006–13. DOI: https://doi.org/10.1002/jsfa.4275
  27. Adi AC, Rifqi MA, Adriani M, Farapti F, Haryana NR, Astina J. Effect of Cooking Methods and Rice Variety on the Sensory Quality and Consumer Acceptance. Media Gizi Indonesia. 2020;15(3):159. DOI: https://doi.org/10.20473/mgi.v15i3.159-166
  28. Bachtari RP, Listyawati S, Sutarno. Starch, amylose and amylopectin levels of M5 and M6 generations of black rice irradiated by gamma Co60 ray. J. Phys.: Conf. Ser. 2020;1436:012116. DOI: https://doi.org/10.1088/1742-6596/1436/1/012116
  29. Fibriyanti YW. Kajian kualitas kimia dan biologi beras merah ( Oryza nivara ) dalam beberapa pewadahan selama penyimpanan. Perpust Univ Sebelas Maret. 2012;1–47
  30. Daeli E, Ardiaria M. Pengaruh Pemberian Nasi Beras Merah (Oryza nivara) dan Nasi Beras Hitam (Oryza sativa L.indica) terhadap Perubahan Kadar Gula Darah dan Trigliserida Tikus Wistar (Rattus norvegicus) Diabetes Melitus Tipe 2. JNH (Journal of Nutrition and Health). 2018;6(2):42. DOI: https://doi.org/10.14710/jnh.6.2.2018.42-56
  31. Ahmad U, Ahmad RS, Arshad MS, Mushtaq Z, Hussain SM, Hameed A. Antihyperlipidemic efficacy of aqueous extract of Stevia rebaudiana Bertoni in albino rats. Lipids Health Dis. 2018;17(1):175. DOI: https://doi.org/10.1186/s12944-018-0810-9
  32. Upa FT, Saroyo S, Katili DY. Komposisi Pakan Tikus Ekor Putih (Maxomys hellwandii) di Kandang. Jurnal Ilmiah Sains. 2017;17(1):7. DOI: https://doi.org/10.35799/jis.17.1.2017.14900
  33. Pinontoan AR. Pengaruh pemberian ekstrak beras hitam terhadap kadar lipoprotein tikus wistar. Fak Kesehat Masyarakat, Univ Sam Ratulangi [Internet]. 2014
  34. Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, Beguinot F, Miele C. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. Int J Mol Sci. 2019;20(9). DOI: https://doi.org/10.3390/ijms20092358
  35. Salim BRK, Wihandani DM, Nyoman N, Dewi A. Obesitas sebagai faktor risiko terjadinya peningkatan kadar trigliserida dalam darah : tinjauan pustaka. 2021;12(2):519–23. DOI: https://doi.org/10.15562/ism.v12i2.1031
  36. Hong Hanh NT, Tuyet LT, Anh Dao DT, Tao Y, Chu DT. Childhood obesity is a High-risk factor for hypertriglyceridemia: A case-control study in Vietnam. Osong Public Heal Res Perspect. 2017;8(2):138–46. DOI: https://doi.org/10.24171/j.phrp.2017.8.2.06
  37. Rashid S, Genest J. Effect of Obesity on High-density Lipoprotein Metabolism. Obesity (Silver Spring, Md.). 2007;15(12):2875–88. DOI: https://doi.org/10.1038/oby.2007.342
  38. Bora K, Pathak MS, Borah P, Das D. Association of decreased high-density lipoprotein cholesterol (HDL-C) with obesity and risk estimates for decreased HDL-C attributable to obesity: Preliminary findings from a hospital-based study in a city from Northeast India. J Prim Care Community Health. 2017;8(1):26–30. DOI: https://doi.org/10.1177/2150131916664706
  39. Lubis Z. Hidup Sehat dengan Makanan Kaya Serat. IPB Repository 2009. http://repository.ipb.ac.id/handle/123456789/42668
  40. Soethama KPR, Herawati S, Subawa N. Hubungan Antara Kadar Gula Darah Puasa Dengan Kadar Trigliserida Pada Penderita Diabetes Melitus Tipe 2 Di Rumah Sakit Umum Pusat Sanglah Bali. Jurnal Medika Udayana. 2020;9(5):53–7. DOI: https://doi.org/10.24843/MU.2020.V09.i5.P10
  41. Raghuvanshi R, Dutta A, Tewari G, Suri S. Qualitative Characteristics of Red Rice and White Rice Procured from Local Market of Uttarakhand : A Comparative Study. J Rice Res. 2017;10(1):49–53
  42. Pratiwi VN, Astuti M, Murdiati A. Efek Pemberian Diet Beras Merah Dan Beras Putih Prapemasakan Terhadap Kadar Total Kolesterol, Trigliserida, Dan Berat Badan Tikus Hiperglikemia. J Teknol Pangan. 2018;12(2). DOI: https://doi.org/10.33005/jtp.v12i2.1285
  43. Nurhidajah, Astuti R, Nurrahman. Black rice potential in HDL and LDL profile in sprague dawley rat with high cholesterol diet. IOP Conf Ser Earth Environ Sci. 2019;292(1). DOI: https://doi.org/10.1088/1755-1315/292/1/012019
  44. Birt DF, Boylston T, Hendrich S, Jane JL, Hollis J, Li L, et al. Resistant starch: Promise for improving human health. Adv Nutr. 2013;4(6):587–601. DOI: https://doi.org/10.3945/an.113.004325
  45. Shah S, Fillier T, Pham TH, Thomas R, Cheema SK. Intraperitoneal administration of short-chain fatty acids improves lipid metabolism of long–evans rats in a sex-specific manner. Nutrients. 2021;13(3):1–17. DOI: https://doi.org/10.3390/nu13030892
  46. Zhou ZK, Wang F, Ren XC, Wang Y, Blanchard C. Resistant starch manipulated hyperglycemia/hyperlipidemia and related genes expression in diabetic rats. Int J Biol Macromol [Internet]. 2015;75:316–21. DOI: https://doi.org/10.1016/j.ijbiomac.2015.01.052
  47. Nugraheni M, Hamidah S, Aulina R. Pengaruh Konsumsi Crackers Kentang Hitam (Coleus tuberosus) Kaya Resistant Starch Tipe 3 terhadap Profil Lipida Tikus yang Menderita Hiperkolesterolemia. J Penelit Sains. 2016;21:21–31. DOI: https://doi.org/10.21831/jps.v21i1.10552
  48. Del Bas JM, Ricketts ML, Baiges I, et al. Dietary procyanidins lower triglyceride levels signaling through the nuclear receptor small heterodimer partner. Mol Nutr Food Res. 2008;52(10):1172–81. DOI: https://doi.org/10.1002/mnfr.200800054
  49. Quesada H, Del Bas JM, Pajuelo D, Díaz S, Fernandez-Larrea J, Pinent M, et al. Grape seed proanthocyanidins correct dyslipidemia associated with a high-fat diet in rats and repress genes controlling lipogenesis and VLDL assembling in liver. Int J Obes (Lond). 2009;33(9):1007–12. DOI: https://doi.org/10.1038/ijo.2009.136
  50. Comerford KB, Miller GD, Reinhardt Kapsak W, Brown KA. The complementary roles for plant-source and animal-source foods in sustainable healthy diets. Nutrients. 2021;13(10):1–16. DOI: https://doi.org/10.3390/nu13103469
  51. Khattab HAH, Al-Amoudi NS, Al-Faleh AAA. Effect of ginger, curcumin and their mixture on blood glucose and lipids in diabetic rats. Life Sci J. 2013;10(4):428–42
  52. Devaraj S, Vega-López S, Kaul N, Schönlau F, Rohdewald P, Jialal I. Supplementation with a pine bark extract rich in polyphenols increases plasma antioxidant capacity and alters the plasma lipoprotein profile. Lipids. 2002;37(10):931–4. DOI: https://doi.org/10.1007/s11745-006-0982-3
  53. Lu MC, Yang MD, Li PC, Fang HY, Huang HY, Chan YC, et al. Effect of oligomeric proanthocyanidin on the antioxidant status and lung function of patients with chronic obstructive pulmonary disease. In Vivo (Brooklyn). 2018;32(4):753–8. DOI: https://doi.org/10.21873/invivo.11304
  54. Popeijus HE, Zwaan W, Tayyeb JZ, Plat J. Potential contribution of short chain fatty acids to hepatic apolipoprotein a-i production. Int J Mol Sci. 2021;22(11). DOI: https://doi.org/10.3390/ijms22115986
  55. Dehghan P, Pourghassem Gargari B, Asgharijafarabadi M. Effects of high performance inulin supplementation on glycemic status and lipid profile in women with type 2 diabetes: a randomized, placebo-controlled clinical trial. Health Promot Perspect. 2013;3(1):55–63. DOI: https://doi.org/10.5681/hpp.2013.007
  56. Zhou Q, Wu J, Tang J, Wang JJ, Lu CH, Wang PX. Beneficial effect of higher dietary fiber intake on plasma HDL-C and TC/HDL-C ratio among Chinese rural-to-urban migrant workers. Int J Environ Res Public Health. 2015;12(5):4726–38. DOI: https://doi.org/10.3390/ijerph120504726
  57. Robins SJ, Lyass A, Zachariah JP, Massaro JM, Vasan RS. Insulin resistance and the relationship of a dyslipidemia to coronary heart disease: The framingham heart study. Arterioscler Thromb Vasc Biol. 2011;31(5):1208–14. DOI: https://doi.org/10.1161/ATVBAHA.110.219055
  58. Khusna FH, Murbawani EA. Hubungan Indeks Massa Tubuh dengan Rasio Trigliserida/High-Density Lipoprotein (TG/HDL) pada Remaja. Journal of Nutrition College [Online]. 2016;5:85–91. DOI: https://doi.org/10.14710/jnc.v5i2.16366
  59. Da Silva Pereira AC, Wurlitzer NJ, Dionísio AP, Soares MVL, Bastos MDSR, Alves RE, et al. Synergistic, additive and antagonistic effects of fruit mixtures on total antioxidant capacities and bioactive compounds in tropical fruit juices. Arch Latinoam Nutr. 2015;65(2):119–27

Last update:

No citation recorded.

Last update: 2025-06-07 00:57:38

No citation recorded.