skip to main content

STUDI TEKNO-EKONOMI PROSES PIROMETALURGI DAUR ULANG BATERAI LITHIUM MANGANESE OXIDE (LMO) DAN LITHIUM IRON PHOSPHATE (LFP)

*Rininta Triaswinanti orcid  -  Badan Riset dan Inovasi Nasional (BRIN), Indonesia
Rahmadhani Triastomo orcid  -  Badan Riset dan Inovasi Nasional (BRIN), Indonesia
Angella Natalia Ghea Puspita scopus  -  Badan Riset dan Inovasi Nasional (BRIN), Indonesia
Abdul Hapid orcid publons  -  Badan Riset dan Inovasi Nasional (BRIN), Indonesia

Citation Format:
Abstract

Limbah baterai lithium-ion diproyeksikan akan meningkat seiring dengan peningkatan jumlah kendaraan listrik. Teknologi daur ulang baterai menjadi perhatian penting terutama dalam mendukung percepatan program Kendaraan Bermotor Listrik Berbasis Baterai (KBLBB). Penelitian ini berfokus pada studi tekno-ekonomi pembangunan pilot plant daur ulang baterai Lithium Manganese Oxide (LMO) dan Lithium Iron Phosphate (LFP) secara pirometalurgi. Kapasitas input daur ulang baterai LFP dan LMO adalah 8.000 ton/tahun.  Nilai Internal Rate of Return (IRR), Net Present Value (NPV), Payback Period (PBP), dan Profitability Index (PI) daur ulang baterai LMO berturut-turut adalah 12,57%, Rp 7.583.346.464,-, 5,85 tahun, dan 2,39. Sedangkan untuk daur ulang baterai LFP berturut-turut adalah 11,15%,  -Rp 11.235.266.123,-, 6,23 tahun, dan 2,32. Hal ini mengindikasikan daur ulang baterai LMO lebih menjanjikan dibandingkan daur ulang baterai LFP. Dari segi analisis sensitivitas, diketahui bahwa daur ulang baterai LMO dan LFP ini lebih sensitif terhadap perubahan harga produk dibandingkan dengan perubahan harga reagen dan nilai OPEX. Emisi gas CO2, pada proses daur ulang baterai LMO lebih sedikit daripada baterai LFP, sehingga pencemaran lingkungan yang dihasilkan lebih minim. Untuk meminimalisir emisi gas ini, dapat dilakukan instalasi peralatan wet scrubber dan implementasi sistem Carbon Capture and Storage (CCS)/Carbon Capture, Utilization, and Storage (CCUS).

 

Abstract

[Techno-Economic Study of Pyrometallurgy Process of Lithium Manganese Oxide (LMO) and Lithium Iron Phosphate (LFP) Battery Recycling] Lithium-ion battery waste is projected to increase along with electric vehicle growth. Battery recycling technology is an important concern, especially in supporting the acceleration of the Battery-Based Electric Vehicle program. This research focuses on the techno-economic study of the construction of a Lithium Manganese Oxide (LMO) and Lithium Iron Phosphate (LFP) battery recycling pilot plant using the pyrometallurgy method to produce an input capacity of LFP and LMO battery recycling of 8,000 tons/year. The Internal Rate of Return (IRR), Net Present Value (NPV), Payback Period (PBP), and Profitability Index (PI) of the LMO battery recycling are 12,57%, Rp 7.583.346.464,-, 5,85 years, and 2,39 respectively. Meanwhile, for LFP battery recycling, the values are 11,15%, -Rp 11.235.266.123,-, 6,23 years, and 2,32 respectively. These values indicate that LMO battery recycling is more promising than LFP battery recycling. In terms of sensitivity analysis, it is known that LMO and LFP battery recycling are more sensitive to changes in product prices than changes in reagent prices and OPEX values. CO2 emissions in the LMO battery recycling process are lower than those from LFP batteries, resulting in more minimal environmental pollution. To minimize these gas emissions, the installation of wet scrubber equipment and the implementation of Carbon Capture and Storage (CCS)/Carbon Capture, Utilization, and Storage (CCUS) can be done.

Keywords: Lithium Ion Battery; Techno-Economy; Battery Recycling; NPV; IRR; PBP; PI; Sensitivity Analysis; Pyrometallurgy

Fulltext View|Download
Keywords: Baterai Lithium Ion; Tekno-Ekonomi; Daur Ulang Baterai; NPV; IRR; PI; PBP; Analisis Sensitivitas; Pirometalurgi
Funding: Badan Riset dan Inovasi Nasional

Article Metrics:

  1. Ailima. (2022). Internal Rate of Return (IRR) - AILIMA. AILIMA. https://ailima.co.id/internal-rate-of-return-irr/
  2. Aprilian, Y. (2019). Pengertian CAPEX dan OPEX Beserta Contohnya - Lamnesia Media (p. 1). https://lamnesia.com/pengertian-CAPEX-dan-OPEX/
  3. Argonne National Laboratory. (2019). "EverBatt: A Closed-loop Battery Recycling Cost and Environmental Impacts Model." Chicago
  4. ATIC. (2018). The Lithium-Ion Battery Value Chain – New Economy Opportunities for Australia. Australian Trade and Investment Commission, 56
  5. Berckmans, G., Messagie, M., Smekens, J., Omar, N., Vanhaverbeke, L., & Mierlo, J. Van. (2017). Cost projection of state of the art lithium-ion batteries for electric vehicles up to 2030. Energies, 10(9). https://doi.org/10.3390/en10091314
  6. Big Brothers. (2021). Daftar Risk Premium Berdasarkan Negara. Bigbrothersinvestment . http://www.bigbrothersinvestment.com/detailpost/daftar-risk-premium-berdasarkan-negara
  7. Buchmann, I. (2019). BU-205: Types of Lithium-ions - Battery University. In Battery University (pp. 1–16). https://batteryuniversity.com/article/bu-205-types-of-lithium-ion
  8. Chen, J. (2023). Profitability Index (PI): Definition, Components, and Formula. Investopedia. https://www.investopedia.com/terms/p/profitability.asp
  9. Dai, Q., Spangenberger, J., Ahmed, S., Gaines, L., Kelly, J. C., & Wang, M. (2019). EverBatt: A Closed-loop Battery Recycling Cost and Environmental Impacts Model. Argonne National Laboratory, 1–88
  10. Dananjaya, D. (2021). Pabrik Baterai Mobil Listrik sampai Daur Ulang Mulai Aktif 2023. KOMPAS.com. https://otomotif.kompas.com/read/2021/06/25/072200415/pabrik-baterai-mobil-listrik-sampai-daur-ulang-mulai-aktif-2023
  11. Deng, Q., Ling, X., Zhang, K., Tan, L., Qi, G., & Zhang, J. (2022). CCS and CCUS Technologies : Giving the Oil and Gas Industry a Green Future. 10(June 2021), 2020–2023. https://doi.org/10.3389/fenrg.2022.919330
  12. Dinas Kominfo Jateng. (2022). Ganjar umumkan penetapan UMK Jawa Tengah, Kota Semarang Tertinggi. In 7 Desember. https://jatengprov.go.id/publik/ganjar-umumkan-penetapan-umk-jawa-tengah-kota-
  13. Duall, H., & Klosterman, F. (2018). What Is A Wet Scrubber? CECO Environmental. https://www.cecoenviro.com/blog/what-is-a-wet-scrubber/
  14. Duttagupta, Subhasri & Mansharamani, Rajesh. (2011). Extrapolation tool for load testing results
  15. Fatimah, S. B., PR, A. P., Siahaan, T., & Khaerudin, K. (2020). Analysis of Technology and Policy Application for Recycling Lithium-ion Batteries To Support National Defense . http://seminar.uad.ac.id/index.php/STEEEM/article/view/3227
  16. Foster, M., Isely, P., Standridge, C. R., & Hasan, M. M. (2014). Feasibility assessment of remanufacturing, repurposing, and recycling of end of vehicle application lithium-ion batteries. Journal of Industrial Engineering and Management, 7(3), 698–715. https://doi.org/10.3926/jiem.939
  17. Frey, P. A., & Reed, G. H. (2012). The Ubiquity of Iron. ACS Chemical Biology, 7(9), 1477–1481. https://doi.org/10.1021/cb300323q
  18. Globalsources. (2021). https://www.globalsources.com/Wheel-loader/Wheel-Loader-FL976H-7-Ton-1186900608p.htm
  19. IEA, (2022), Global EV Outlook 2022, IEA, Paris https://www.iea.org/reports/global-ev-outlook-2022
  20. IPCC, (2018): Summary for Policymakers. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 3-24. https://doi.org/10.1017/9781009157940.001
  21. Kaya, M. (2022). State-of-the-art lithium-ion battery recycling technologies. Circular Economy, 1(2), 100015. https://doi.org/10.1016/j.cec.2022.100015
  22. KIK (Kawasan Industri Kendal). (2020). Mengapa KIK. https://kendalindustrialpark.co.id/page/index/17/why-kip
  23. Kompas.com. (2021). Rincian UMR Karawang, Bekasi, dan Purwakarta di 2021. https://money.kompas.com/read/2021/06/21/224600026/rincian-umr-karawang-bekasi-dan-purwakarta-di-2021
  24. Makuza, B., Tian, Q., Guo, X., Chattopadhyay, K., & Yu, D. (2021, April). Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. Journal of Power Sources, 491, 229622. https://doi.org/10.1016/j.jpowsour.2021.229622
  25. Matche. (2014). https://www.matche.com/equipcost/EquipmentIndex.html
  26. Mercer Capital.(2021)Understand the Discount Rate Used in a Business Valuation. (2021). https://mercercapital.com/article/understand-the-discount-rate-used-in-a-business-valuation/
  27. Mular A.L. (1998). "CAPCOSTS: A Handbook for Estimating Mining and Mineral Processing Equipment Costs and Capital Expenditures and Aiding Mineral Project Evaluations". Vol. 47,1998; Canadian Institute of Mining, Montreal, Canada
  28. Muzayanha, S. U., Yudha, C. S., Hasanah, L. M., Nur, A., & Purwanto, A. (2019, August 31). Effect of Heating on the Pretreatment Process for Recycling Li-Ion Battery Cathode. JKPK (Jurnal Kimia Dan Pendidikan Kimia), 4(2), 105. https://doi.org/10.20961/jkpk.v4i2.29906
  29. NWANEKEZIE, O. F., IROEGBU, A. N., WOGU, C. L., & OKOROCHA, K. A. (n.d.). Sensitivity Analysis: A Technique for Investigating the Impact of Changes in Project Variables. International Journal of Research Development
  30. Lander, L., Cleaver, T., Rajaeifar, M. A., Nguyen-Tien, V., Elliott, R. J., Heidrich, O., Kendrick, E., Edge, J. S., & Offer, G. (2021, July). Financial viability of electric vehicle lithium-ion battery recycling. IScience, 24(7), 102787. https://doi.org/10.1016/j.isci.2021.102787
  31. Li, J., Hou, Y., Wang, P., & Yang, B. (2019). A Review of Carbon Capture and Storage Project Investment and Operational Decision-Making Based on Bibliometrics. https://doi.org/10.3390/en12010023
  32. Liu, S., Wang, B., Zhang, X., Zhao, S., Zhang, Z., & Yu, H. (2021). Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries. Matter, 4(5), 1511–1527. https://doi.org/10.1016/j.matt.2021.02.023
  33. Liu, Y., Zhang, R., Wang, J., & Wang, Y. (2021). Current and future lithium-ion battery manufacturing. IScience, 24(4), 102332. https://doi.org/10.1016/j.isci.2021.102332
  34. Paddle. (2022). Discount rate formula: Calculating discount rate [WACC/APV] https://www.paddle.com/resources/discount-rate-formula
  35. Peters, M.S., Timmerhaus, K.D., West, R.E., 2003. Plant Design and Economics for Chemical Engineers. McGraw-Hill Education
  36. Purnatiyo , D. (2013). Analisis Kelayakan Investasi Alat DNA Real Time Thermal Cycler (RT-PCR) Untuk Pengujian Gelatin. Jurnal PASTI , Volume VIII No 2, 212 – 226
  37. Perusahan Listrik Negara (PLN). (2021). Penetapan Tarif Tenaga Listrik
  38. Peraturan Bupati Kendal Nomor 90 Tahun 2008 Tentang Tarif Air Pada Perusahaan Daerah Air Minum Tirto Panguripan Kabupaten Kendal
  39. Rizaty, M. A. (2022). Motor Listrik di Indonesia Diproyeksi Mencapai 13 Juta pada 2030. Dataindonesia.id. https://dataindonesia.id/sektor-riil/detail/motor-listrik-di-indonesia-diproyeksi-mencapai-13-juta-pada-2030
  40. Rizeki, D. N. (2023). IRR adalah: Pengertian, Rumus, dan Cara Menghitungnya. Majoo.id. https://majoo.id/solusi/detail/irr-adalah
  41. Ross S. (2021). CAPEX vs. OPEX: What's the Difference? Investopedia . https://www.investopedia.com/ask/answers/112814/whats-difference-between-capital-expenditures-CAPEX-and-operational-expenditures-OPEX.asp
  42. Samarukha, I. (2020). Recycling strategies for End-of-Life Li-ion Batteries from Heavy Electric Vehicles. 1–52
  43. Suryohendrasworo, S. D. (2021, December 30). Penyisihan Kontaminan dari Air Limbah Hasil Daur Ulang Baterai LiFePO4 (LFP) Menggunakan Penukar Ion Resin Kation Amberlite HPR1100 Na dan Resin Anion Dowex Marathon A. Jurnal Rekayasa Proses, 15(2), 231. https://doi.org/10.22146/jrekpros.69847
  44. Susanti, I. (2019). Technologies and Materials for Carbon Dioxide Capture. 1(2)
  45. Syazili, A., Kurniawan, A., Widada, J., & Sembada, P. T. S. (2021, February 1). Techno-economic Analysis in the Development of Smart Sluice Gate Systems. IOP Conference Series: Earth and Environmental Science, 662(1), 012005. https://doi.org/10.1088/1755-1315/662/1/012005
  46. Thompson, D., Hyde, C., Hartley, J. M., Abbott, A. P., Anderson, P. A., & Harper, G. D. (2021, December). To shred or not to shred: A comparative techno-economic assessment of lithium ion battery hydrometallurgical recycling retaining value and improving circularity in LIB supply chains. Resources, Conservation and Recycling, 175, 105741. https://doi.org/10.1016/j.resconrec.2021.105741
  47. World Resources Institute (WRI). 2022. Climate Watch Historical GHG Emissions. Washington, DC. Available online at: https://www.climatewatchdata.org/ghg-emissions
  48. Yang, Y.; Lan, L.; Hao, Z.; Zhao, J.; Luo, G.; Fu, P.; Chen, Y. (2022). Life Cycle Prediction Assessment of Battery Electrical Vehicles with Special Focus on Different Lithium-Ion Power Batteries in China. Energies 2022, 15, 5321. https:// doi.org/10.3390/en15155321
  49. Yuan, C., Deng, Y., Li, T., & Yang, F. (2017). Manufacturing energy analysis of lithium ion battery pack for electric vehicles. CIRP Annals - Manufacturing Technology, 66(1), 53–56. https://doi.org/10.1016/j.cirp.2017.04.109

Last update:

No citation recorded.

Last update: 2024-06-20 19:42:39

No citation recorded.