skip to main content

MINIMIZING PATIENT LENGTH OF STAY IN THE EMERGENCY DEPARTMENT AT ANNA MEDIKA GENERAL HOSPITAL, MADURA

*Ida Lumintu orcid scopus  -  University of Trunojoyo Madura, Indonesia
Hidayatur Rohman  -  University of Trunojoyo Madura, Indonesia
Rullie Annisa  -  University of Trunojoyo Madura, Indonesia

Citation Format:
Abstract

Prolonged length of stay (LOS) in emergency departments (EDs) negatively impacts patient care and operational efficiency. This study applies simulation modeling using ARENA software to analyze and optimize ED operations at Anna Medika General Hospital in Madura, Indonesia. Three improvement scenarios were evaluated: adding one nurse, one bed, and one general practitioner. The results show that adding a general practitioner reduced LOS significantly, from 184.64 minutes (3.08 hours) to 154.37 minutes (2.57 hours), making it the most effective intervention. However, the findings emphasize the importance of a holistic approach, as standalone interventions may only address isolated bottlenecks. Combining targeted staffing increases with process optimizations provides the most sustainable improvements. This study highlights simulation’s value in evaluating operational strategies, enabling hospitals to make data-driven decisions that balance cost, resource allocation, and patient satisfaction.

Fulltext View|Download
Keywords: emergency department; length of stay; simulation modeling; ARENA software; operational efficiency

Article Metrics:

  1. Ahmed, A. A., Ibro, S. A., Melkamu, G., Seid, S. S., & Tesfaye, T. (2020). Length of stay in the emergency department and its associated factors at Jimma Medical Center, Southwest Ethiopia. Open Access Emergency Medicine, 12, 227–235. https://doi.org/10.2147/oaem.s254239
  2. Angesti, D. (2015). Penilaian tingkat efisiensi pengelolaan rumah sakit dengan aplikasi grafik Barber-Johnson di Rumah Sakit Usada Sidoarjo. Jurnal Manajemen Kesehatan Yayasan RS.Dr. Soetomo, 1(1), 74. https://doi.org/10.29241/jmk.v1i1.44
  3. Angler, Y., Loßin, A., & Goetz, O. (2024). Process flows of an emergency department: How process modelling and simulation can help improve the efficiency and quality of patient care. SHS Web of Conferences, 184, 02009–02009. https://doi.org/10.1051/shsconf/202418402009
  4. Asuquo, D., Umoren, I., Osang, F., & Attai, K. (2023). A machine learning framework for length of stay minimization in healthcare emergency department. Studies in Engineering and Technology, 10(1), 1–1. https://doi.org/10.11114/set.v10i1.6372
  5. Blanco, B. B., Barreto, E., & Santos. (2024). Discrete event simulation to analyze patient prioritization in the context of an emergency department. Pesquisa Operacional, 44. https://doi.org/10.1590/0101-7438.2023.043.00274435
  6. Bo, M., Bonetto, M., Bottignole, G., Porrino, P., Coppo, E., Tibaldi, M., Ceci, G., Raspo, S., Cappa, G., & Bellelli, G. (2016). Length of stay in the emergency department and occurrence of delirium in older medical patients. Journal of the American Geriatrics Society, 64(5), 1114–1119. https://doi.org/10.1111/jgs.14103
  7. Brouns, S. H. A., Stassen, P. M., Lambooij, S. L. E., Dieleman, J., Vanderfeesten, I. T. P., & Haak, H. R. (2015). Organisational factors induce prolonged emergency department length of stay in elderly patients – A retrospective cohort study. PLOS ONE, 10(8), e0135066. https://doi.org/10.1371/journal.pone.0135066
  8. Dezfuli, S. A. T., Parvizi, H., Raji, M., & Yazdani, R. (2022). Factors affecting length of stay in patients referred to emergency department in Bandar Abbas, Iran. Hormozgan Medical Journal, 26(4), 172–179. https://doi.org/10.34172/hmj.2022.30
  9. Fekadu, G., Lamessa, A., Mussa, I., Bayissa, B. B., & Dessie, Y. (2022). Length of stay and its associated factors among adult patients who visit emergency department of University Hospital, Eastern Ethiopia. SAGE Open Medicine, 10, 205031212211168. https://doi.org/10.1177/20503121221116867
  10. Feng, T., Ajdari, A., Boyle, L. N., Kannan, N., Burd, R., Groner, J. I., Farneth, R. A., & Vavilala, M. S. (2024). Computer simulation to assess emergency department length of stay in pediatric traumatic brain injury. Pediatric Emergency Care, 40(6). https://doi.org/10.1097/pec.0000000000003088
  11. Franklin, B. J., Li, K. Y., Somand, D. M., Kocher, K. E., Kronick, S. L., Parekh, V. I., Goralnick, E., Nix, A. T., & Haas, N. L. (2021). Emergency department provider in triage: Assessing site‐specific rationale, operational feasibility, and financial impact. Journal of the American College of Emergency Physicians Open, 2(3). https://doi.org/10.1002/emp2.12450
  12. Ghanes, K., Wargon, M., Jouini, O., Jemai, Z., Diakogiannis, A., Hellmann, R., Thomas, V., & Koole, G. (2015). Simulation-based optimization of staffing levels in an emergency department. Simulation, 91(10), 942–953. https://doi.org/10.1177/0037549715606808
  13. Grover, C., Sughair, J., Stoopes, S., Guillen, F., Tellez, L., Wilson, T., Gaccione, C., & Close, R. (2018). Case management reduces length of stay, charges, and testing in emergency department frequent users. Western Journal of Emergency Medicine, 19(2), 238–244. https://doi.org/10.5811/westjem.2017.9.34710
  14. Kenny, E., Hassanzadeh, H., Khanna, S., Boyle, J., & Louise, S. (2021). Patient flow simulation using historically informed synthetic data. Studies in Health Technology and Informatics. https://doi.org/10.3233/shti210007
  15. Kim, K.-H., Lee, J. G., Lee, W. Y., Sung, W. Y., & Seo, S. W. (2018). Changes in medical care due to the absence of internal medicine physicians in emergency departments. Clinical and Experimental Emergency Medicine, 5(2), 120–130. https://doi.org/10.15441/ceem.17.235
  16. Lee, H., Lee, S., & Kim, H. (2022). Factors affecting the length of stay in the emergency department for critically Ill patients transferred to regional emergency medical center. Nursing Open. https://doi.org/10.1002/nop2.1573
  17. Raunak, M., Osterweil, L. J., Wise, A., Clarke, L. A., & Henneman, P. L. (2009, January 1). Simulating patient flow through an emergency department using process-driven discrete event simulation. 2009 ICSE Workshop on Software Engineering in Health Care. https://doi.org/10.1109/sehc.2009.5069608
  18. Shin, S. Y., Balasubramanian, H., Brun, Y., Henneman, P. L., & Osterweil, L. J. (2013, May 1). Resource scheduling through resource-aware simulation of emergency departments. 2013 5th International Workshop on Software Engineering in Health Care (SEHC). https://doi.org/10.1109/sehc.2013.6602480
  19. Srivastava, S., Vemulapalli, B., Okoh, A. K., & Kassotis, J. (2022). Disparity in hospital admissions and length of stay based on income status for emergency department hypertensive crisis visits. Journal of Hypertension, 40(8), 1607–1613. https://doi.org/10.1097/hjh.0000000000003193
  20. Terning, G., Brun, E. C., & El-Thalji, I. (2022). The patient flow effect of pandemic policies: A hybrid simulation study in a Norwegian emergency department. Healthcare, 11(1), 1. https://doi.org/10.3390/healthcare11010001
  21. Wehrmeister, F. C., Victora, C. G., Horta, B. L., Menezes, A. M. B., Santos, I. S., Bertoldi, A. D., da Silva, B. G. C., Barros, F. C., Barros, A. J. D., Matijasevich, A., Bassani, D. G., Gonçalves, H., Murray, J., Tovo-Rodrigues, L., Assunção, M. C. F., Silveira, M. F., Domingues, M. R., & Hallal, P. R. C. (2019). Hospital admissions in the first year of life: Inequalities over three decades in a southern Brazilian city. International Journal of Epidemiology, 48(Supplement_1), i63–i71. https://doi.org/10.1093/ije/dyy228
  22. Yim, S. P. (2016). Commencement of systemic corticosteroids in emergency department versus in ward in management of acute adult asthma requiring hospitalization: A retrospective cohort study. Bangladesh Journal of Medical Science, 15(4), 608–614. https://doi.org/10.3329/bjms.v15i4.27608

Last update:

No citation recorded.

Last update: 2024-12-23 09:59:16

No citation recorded.