skip to main content

Penurunan Konsentrasi COD Limbah Batik Pada Proses Seeding dan Aklimatisasi Menggunakan Material Preservasi Mikroorganisme (MPMO)

Pusat Penelitian Geoteknologi, Lembaga Ilmu Pengetahuan Indonesia, Kota Bandung, Jawa Barat 40135, Indonesia

Open Access Copyright 2022 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Latar belakang: Batik merupakan warisan budaya Indonesia yang nilai ekspornya meningkat pesat. Dampak ini dapat meningkatkan pendapatan negara secara signifikan. Di sisi lain, memperluas kesempatan kerja bagi masyarakat untuk memproduksi batik. Namun , produksi batik yang besar meningkatkan volume limbah. Permasalahan ini dapat mencemari lingkungan jika limbah batik tidak terurai dengan baik. Oleh karena itu, kami mengusulkan metode bioremediasi untuk menguraikan polutan COD dalam limbah batik. Penelitian ini bertujuan untuk mengukur kemampuan MPMO dalam mereduksi COD pada limbah batik. Hasil penelitian terdahulu menunjukkan bakteri Bacillus licheniformis memiliki kemampuan mereduksi COD pada limbah tekstil. Selain itu, MPMO yang mengandung bakteri Bacillus licheniformis juga terbukti dapat menurunkan nilai COD pada IPAL industri gula.

Metode: Penelitian ini dilakukan dalam skala laboratorium, dan menggunakan sistem batch untuk proses seeding dan aklimatisasi pada MPMO. Pada proses seeding menggunakan nutrien buatan untuk menumbuhkan mikroorganisme. Proses aklimatisasi menggunakan % v/v campuran limbah batik dan nutrien buatan sebagai proses adaptasi mikroorganisme terhadap limbah. Parameter selama proses seeding dan aklimatisasi yaitu COD, pH, MLSS, dan MLVSS. Pengambilan parameter COD dilakukan setiap 0 jam pada influen dan 24 jam pada efluen reaktor.

Hasil: Nilai CODinfluen, CODefluen, Efisiensi penyisihan COD, pHawal, pHakhir, MLSS, dan MLVSS yang diperoleh selama proses aklimatisasi masing-masing antara 1145-3084 mg/L, 354-1268 mg/L, 54-82%, 6.43-8.25, 7.33-8.32, 790.5-2356.5 mg/L, 0.454-1.657 mg/L.

Simpulan: Penggunaan MPMO dengan bakteri Bacillus licheniformis dapat menyisihkan COD limbah batik pada proses aklimatisasi sebesar 82% dengan nilai rata-rata efisiensi penyisihan COD sebesar 65%.

 

ABSTRACT

Title: Reduction of COD Concentration from Batik Waste Water Treatment in Seeding and Acclimatization Process Using Microorganism Preservation Materials (MPMO)

Background: Batik is an Indonesian cultural heritage whose export value is increasing rapidly. This impact can increase the state's income significantly. On the other hand, it expands job opportunities for people to produce batik. However, large batik production increases the volume of waste. This problem can pollute the environment if the batik waste is not decomposed properly. Therefore, we propose a bioremediation method to decipher the pollutant COD in batik waste. This research aims to measure the ability of MPMO in reducing COD in batik waste. The results of previous studies showed that Bacillus licheniformis has the ability to reduce COD in textile waste. Moreover, MPMO containing Bacillus Licheniformis bacteria also can decrease COD in the sugar industry WWTPs.

Method: This research was conducted on a laboratory scale with the sample pollutants from the batik production in Yogyakarta. We used a batch system for the seeding and acclimatization process in MPMO. During the seeding process, nutrients are used to grow microorganisms. The acclimatization process uses a % v/v mixture of batik waste and nutrients as a process of adapting microorganisms to waste. Parameters of the seeding and acclimatization were recorded during the process, such as COD, pH, MLSS, and MLVSS. For COD, the parameter was taken every 0 hours on the influent and 24 hours on the effluent reactor.

Result: The values of CODinfluent, CODefluent, COD removal efficiency, initial pH, final pH, MLSS, and MLVSS obtained during the acclimation process were respectively 1145-3084 mg / L, 354-1268 mg / L, 54-82%, 6.43- 8.25, 7.33-8.32, 790.5-2356.5 mg / L, 0.454-1.657 mg / L.

Conclusion: The use of MPMO with Bacillus licheniformis bacteria can remove COD from batik waste in the acclimatization process by 82% with an average COD removal efficiency of 65%.

Note: This article has supplementary file(s).

Fulltext View|Download |  CTA
Copyright Transfer Agreement
Subject
Type CTA
  Download (241KB)    Indexing metadata
 ES
Etichal Statement
Subject
Type ES
  Download (1MB)    Indexing metadata
 Turnitin
Turnitin
Subject
Type Turnitin
  Download (1MB)    Indexing metadata
Keywords: Limbah batik; MPMO; Bacillus licheniformis; bioremediasi
Funding: Indonesia institute of sciences

Article Metrics:

  1. Kusumawati N, Wijiastuti A, Rahmadyanti EN, Kusumawati A, Wijiastuti ER. Operating Conditions Optimization on Indonesian Batik : Dyes Wastewater Treatment by Fenton Oxidation and Separation Using Ultrafiltration Membrane. Journal of Environmental Science & Engineering. May2012; Vol. 1 Issue 5A, p672
  2. Sutisnaa EW, Mamat R, Dui YR, Riri M, Khairurrijala, and Mikrajuddin A. Batik Wastewater Treatment Using TiO2 Nanoparticles Coated on the Surface of Plastic Sheet. Procedia Engineering. 2017; 170, 78 – 83. https://doi.org/10.1016/j.proeng.2017.03.015
  3. Handayani W, Arianti IRH, A Ign K. Penetapan Skala Industri Batik Rumahan Menurut Kriteria Lokal : Studi di Desa Jarum, Kabupaten Klaten. 2017. Manajemen IKM. https://doi.org/10.29244/mikm.12.1.25-34
  4. Rahayu DP. Peta Politik Industri Batik Yogyakarta dan Dampaknya dalam Sistem Perburuhan Batik di Yogyakarta. Jurnal Kajian Ruang Sosial-Budaya. 2019; Vol. 3, No. 1 Hal.30-45
  5. Kitture R, Soumya JK, Ruchika KG, S.N. Kale RK, S.J. Koppikar, R. Kaul G, S.N. Kale. Catalyst efficiency, photostability and reusability study of ZnO nanoparticles in visible light for dye degradation. J. Phys. Chem. Solids. 2011; 72 60–66. https://doi.org/10.1016/j.jpcs.2010.10.090
  6. Sonta MA, Gunawan, Antari AA. Strategi Adaptasi Ekologi Masyarakat Dalam Menghadapi Pencemaran Limbah Produksi Batik (Studi Etnoekologi di Daerah Aliran Sungai Setu, Kelurahan Jenggot, Kecamatan Pekalongan Selatan, Kota Pekalongan). Solidarity. 2017; 6 (2)
  7. Mukimin A, Hanny V, Nur Z, Agus P, Kukuh AW. Performance of Bioequalization-Electrocatalytic Integrated Method for Pollutants Removal of Hand-drawn Batik Wastewater. Journal of Water Process Engineering. 2018; 21, 77–83. https://doi.org/10.1016/j.jwpe.2017.12.004
  8. Christiany A, Suprihatin, Indrasti NS. Potensi teknis-ekonomis daur ulang efluen air limbah industri tekstil menggunakan aplikasi arang aktif. JPSL. 2019; 9(2): 229-240. https://doi.org/10.29244/jpsl.9.2.229-240
  9. International Labour Office. Penelitian tentang Praktik Pengusaha dalam Mempekerjakan Pekerja Rumahan di Provinsi Jawa Barat dan Jawa Tengah. ILO-Apindo Intercafe, Jakarta. 2015
  10. Sari DP, Sri H, Dyah IR, Tri SW. Pengukuran Tingkat Eko-efisiensi Menggunakan Life Cycle Assessment untuk Menciptakan Sustainable Production di Industri Kecil Menengah Batik. Jurnal Teknik Industri. 2012; Vol. 14, No. 2. https://doi.org/10.9744/jti.14.2.137-144
  11. Sardjono A, Brian AP, Desrezka GL. Pelaksanaan Perlindungan Hukum Merek untuk Pengusaha UKM Batik di Pekalongan, Solo dan Yogyakarta. Jurnal Hukum dan Pembangunan. Oktober-Desember 2013; Tahun ke-43 No.4. https://doi.org/10.21143/jhp.vol44.no4.32
  12. Kemenperin. Karya Indonesia Batik Nusantara. 2013
  13. Sulaksono A, Hefni E, Budi K. Kajian Beban Pencemaran Limbah Cair Industri Kecil Menengah (IKM) Batik Klaster Trusmi Kabupaten Cirebon. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan. Juli 2015; Vol 5 No. 1: 17-24. https://doi.org/10.19081/jpsl.2015.5.2.17
  14. Katheresan V, Jibrail K, Sie YL. Efficiency of various recent wastewater dye removal methods: A review. Journal of Environmental Chemical Engineering. 2018; 6: 4676–4697. https://doi.org/10.1016/j.jece.2018.06.060
  15. Maria R., Nyoman S, Dadan S, Dyah M. Pengaruh Limbah Cair Industri Batik Terhadap Kualitas Air Tanah Dangkal di Daerah Laweyan Surakarta. Prosiding Pemaparan Hasil Penelitian Pusat Geoteknologi LIPI. 2014; ISBN: 978-979-8636-23-3
  16. Zongping W, Kai H, Miaomiao X, Zizheng L. Textile Dyeing Wastewater Treatment. INTECH Open Access Publisher, Rijeka. 2011
  17. Liu L, Juan Z, Yi T, Yucheng J, Mancheng H, Shuni L, Quanguo Z. Rapid decolorization of anthraquinone and triphenylmethane dye using chloroperoxidase: Catalytic mechanism, analysis of products and degradation route. Chemical Engineering Journal. May 2014; 244(15):9-18. https://doi.org/10.1016/j.cej.2014.01.063
  18. Ganiyu SA, Oluwole OA, Saheed AL, Kazeem OS, Idris AB, Muhammad Q, Khalid A. Boron-doped activated carbon as efficient and selective adsorbent for ultra-deep desulfurization of 4,6-dimethyldibenzothiophene. Chemical Engineering Journal Volume. 1 August 2017; 321: 651. https://doi.org/10.1016/j.cej.2017.03.132
  19. V.K. Gupta, Suhas. Application of low-cost adsorbents for dye removal—a review. J. Environ. Manage. 2009;90 (8): 2313–42. https://doi.org/10.1016/j.jenvman.2008.11.017
  20. Wan FK, Li NH, Soon AO, Yee SW, Nik AY, Fahmi R. Decolorization and Mineralization of Batik Wastewater through Solar Photocatalytic Process. Sains Malaysiana. 2015: 44(4): 607–12. https://doi.org/10.17576/jsm-2015-4404-16
  21. Endeshaw A, Birhanu G, Zerihun T, Misganaw W.Application of microorganisms in bioremediation-review J. Environ. Microb. 2017; 1(1): 2-9
  22. Ajao AT, Sulugambari BZ, Awe S. Bioremediation of wastewaters from local textile industries in Ilorin, Nigeria. Sciences, Kwara State University, Malete, Nigeria
  23. Sembiring H, Sumarnadi ET, Effendi, Gurharyanto. Pelletisasi Bentonit Sebagai Preservasi Bakteri Pengurai Limbah Organik Cair : Rekayasa dan Prototip, Prosiding Pemaparan Hasil Penelitian Pusat Penelitian Geoteknologi LIPI. 2012; ISBN 978-979-8636-19-6, Bandung
  24. Agustinus ETS, Happy S, Effendi. Aplikasi Material Preservasi Mikroorganisme (MPMO) dalam Pemrosesan Limbah Cair Organik Pada Instalasi Pengolahan Air Limbah. Riset Geologi Pertambangan. Juni 2014; 24(1):65-76. https://doi.org/10.14203/risetgeotam2014.v24.82
  25. Veith B, Herzberg, Steckel S, Feesche J, Maurer KH, Ehrenreich P, Baumer S, Henne A, Liesegang H, Merkl R, Ehrenreich A, Gottschalk G. The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential. J Mol. Microbiol. Biotechnol. 2004,7(4):204-211. https://doi.org/10.1159/000079829
  26. Kahar A, Eko H, Lukman M, Budi, Nining W, Ika, Mey C. The Study of Seeding and Acclimatization from Leachate Treatment in Anaerobic Bioreactor. ARPN Journal of Engineering and Applied Sciences. April 2017:12(8)
  27. Hubbe MA, JR Metts, D Hermosilla, MA Blanco, L Yerushalmi, F Haghighat, P Lindholm L, Z. Khodaparast, M Kamali, A Elliott. Wastewater treatment and reclamation: a review of pulp and paper industry practices and opportunities. BioResources. 2016;11. https://doi.org/10.15376/biores.11.3.Hubbe
  28. APHA. Standard Methods for the Examination of Water and Wastewater, American Public Health Association, 2lst ed. Washington, DC. 2005
  29. N. Seetha, Renu B, Pramod K. Effect of organic shock loads on a two-stage activated sludge-biofilm reactor. Bioresource Technology. 2010; 101: 3060–66. https://doi.org/10.1016/j.biortech.2009.12.055
  30. Wateronline. 2020. https://www.wateronline.com/doc/mixed-liquor-suspended-solids-in-wastewater-0002, Accessed 18.08.20
  31. Cla´udia FG, Sandra S, Joa˜o GC. Galinha CF, Sanches S, Crespo JG. Membrane bioreactors. Fundamental Modelling of Membrane Systems. 2018: 209–49. https://doi.org/10.1016/B978-0-12-813483-2.00006-X
  32. Kanimozhi R, Vasudevan N. Effect of organic loading rate on the performance of aerobic SBR treating anaerobically digested distillery wastewater. Clean Technologies and Environmental Policy. 2013;16(3):467–76. doi: 10.1007/s10098-013-0639-x
  33. Suryadiputra INN. Pengolahan Air Limbah dengan Metoda Biologi. Strengthening Program : Rancang Bangun IPAL. Bandung. 1994
  34. Chelliapan S, Wilby T, Yuzir A, Sallis PJ. Influence of organic loading on the performance and microbial community structure of an anaerobic stage reactor treating pharmaceutical wastewater. Desalination. 2011; 271:257–64. https://doi.org/10.1016/j.desal.2010.12.045
  35. Eskani, Istianah N, Carlo, Evone dan Sulaeman. Efektivitas Pengolahan Air Limbah Batik dengan Cara Kimia dan Biologi. 2005
  36. Balapure, Kshama & Jain, Kunal & Bhatt, Nikhil & Madamwar, Datta. Exploring bioremediation strategies to enhance the mineralization of textile industrial wastewater through sequential anaerobic-microaerophilic process. International Biodeterioration & Biodegradation. 2016;106: 97-105. 10.1016/j.ibiod.2015.10.008. https://doi.org/10.1016/j.ibiod.2015.10.008
  37. Indriyati. Proses Pembenihan (Seeding) dan Aklimatisasi pada Reaktor Tipe Fixed Bed, J. Tek.Ling.P3TL-BPPT. 2003;2:54-60
  38. Effendi H. Telaah Kualitas Air : Bagi Pengelolaan Sumber Daya dan Lingkungan Perairan. Penerbit : Kanisius. Yogyakarta. 2003
  39. Bornare J, Kalyanraman V, Sonde RR. Application of Anaerobic Membrane Bioreactor (AnMBR) for Low-Strength Wastewater Treatment and Energy Generation. Industrial Wastewater Treatment, Recycling and Reuse. 2014: 399–434. doi: 10.1016/b978-0-08-099968-5.00010-6
  40. Kim M, Guerra P, Theocharides M, Barclay K, Smyth SA, Alaee M. Parameters affecting the occurrence and removal of polybrominated diphenyl ethers in twenty Canadian wastewater treatment plants. Water Research. 2013;47(7): 2213. https://doi.org/10.1016/j.watres.2013.01.031
  41. Dong W, Min J, Can W. Degradation of Organic Pollutans and Characteristics of Activated Sludge in an Anaerobic/Anoxic/Oxic Reactor Treating Chemical Industrial Wastewater. Brazilian Journal of Chemical Engineering. 2014;31(03):703 – 13. https://doi.org/10.1590/0104-6632.20140313s00002748
  42. Sastrawijaya AT. Pencemaran Lingkungan. Rineka Cipta, Jakarta. 2000
  43. Nilesh S, Anil G. Isolation, characterization and identification of extracellular enzyme producer Bacillus licheniformis from municipal wastewater and evaluation of their biodegradability. Biotechnology Research and Innovation. 2018; 2: 37-44. https://doi.org/10.1016/j.biori.2018.03.001
  44. Indrayani L, Nur R. Nilai Parameter Kadar Pencemar sebagai Penentu Tingkat Efektivitas Tahapan Pengolahan Limbah Cair Industri Batik. Jurnal Rekayasa Proses Research article. 2018;12(1): 41-50. https://doi.org/10.22146/jrekpros.35754
  45. Apriyani N. Industri Batik: Kandungan Limbah Cair dan Metode Pengolahannya. Media Ilmiah Teknik Lingkungan. Februari 2018;3(1): Article Review21-29. https://doi.org/10.33084/mitl.v3i1.640
  46. Gh Ghanizadeh, R Sarrafpour. The Effects of Temperature and PH on Settlability of Activated Sludge Flocs. Iranian J. Publ. Health. 2001;30(3-4):139-42

Last update:

  1. Decreasing domestic wastewater parameters with aeration system and physical process combination of precipitation and ultraviolet light exposure

    Rizka Novembrianto, M. Munawar, Restu Hikmah Ayu, Muslikha Nourma Rhomadhoni, Firra Rosariawari. PROCEEDINGS OF THE 13TH TSME INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING 2023, 3236 , 2024. doi: 10.1063/5.0224686
  2. Evaluation of sequencing batch reactor performance in handling organic shock loads of ammonia wastewater

    H Budiastuti, R N Salsabila, S N Anisa, Keryanti. Journal of Physics: Conference Series, 2908 (1), 2024. doi: 10.1088/1742-6596/2908/1/012022
  3. Removal of Color, Phenol and Sulfide from Batik Wastewater using Immobilized Bacillus licheniformis in Bentonite Mineral

    V Rachmawati, R Nurjayati, M D Yuniati. IOP Conference Series: Earth and Environmental Science, 1201 (1), 2023. doi: 10.1088/1755-1315/1201/1/012020
  4. Potential of Eco-enzyme Averrhoa bilimbi L. Fruit as an Innovation in Tempeh Wastewater Treatment in Plaju District, South Sumatra

    Siti Soleha, Delima Engga Maretha, Andi Saputra. Journal of Multidisciplinary Applied Natural Science, 5 (1), 2024. doi: 10.47352/jmans.2774-3047.224

Last update: 2024-12-26 10:53:43

No citation recorded.