skip to main content

Hidden Environmental Impact of COVID-19 Vaccination: Waste Management, Treatment, and Global Warming Potential

1Civil Engineering Study Program, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami No.36, Surakarta- Jawa Tengah 57126, Indonesia

2Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina Jl. Teuku Nyak Arief, Jakarta 12220, Indonesia

Open Access Copyright 2022 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Latar belakang: Indonesia, negara terpadat keempat di dunia, muncul sebagai episentrum Covid-19 di Asia pada pertengahan tahun 2021. Lonjakan kasus COVID19 mendorong negara untuk menargetkan 1 juta vaksinasi Covid-19 per hari.

Metode: Penelitian ini menggunakan data kualitatif dari tinjauan pustaka sebelumnya kemudian diolah menggunakan perhitungan yang sesuai dengan metode pengelolaan limbah vaksin.

Hasil: Meskipun peluncuran vaksinasi besar-besaran, dampaknya terhadap lingkungan masih dipertanyakan. Tidak hanya pembuangan limbah medis yang tidak tepat tetap menjadi tantangan sejak wabah pandemi pada tahun 2020, tetapi vaksinasi memperburuk keadaan. Selain limbah padat, konsumsi listrik dan emisi polutan dari zat pendingin mungkin berkontribusi terhadap jejak karbon yang tinggi.

Simpulan: Makalah ini menyoroti pentingnya pengelolaan limbah selama Covid-19 dan konsekuensi tak terduga pada penyimpanan dan penanganan vaksin untuk pengambilan keputusan peluncuran vaksinasi lebih lanjut.

 

ABSTRACT

Background: Indonesia, the world’s fourth most populous country, emerged as Asia's Covid-19 epicenters in the mid of 2021. The surge in COVID19 cases drives the nation to aim for 1 million Covid-19 vaccinations per day.

Method: This study uses qualitatively and quantitatively data from previous literature reviews and then processed using calculations that are in accordance with the vaccine waste management method.

Result: Despite massive vaccination rollout, the impact on the environment is still in question. Not only has improper medical waste disposal remained a challenge since the pandemic breakout in 2020, but the vaccination worsened the circumstances. In addition to solid waste, the electricity consumption and pollutant emissions of the refrigerants might contribute to a high carbon footprint.

Conclusion: This paper highlights the importance of waste management during Covid-19 and unforeseen consequences on vaccine storage and handling for decision making of further vaccination rollouts.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
Pernyataan Etik JKLI
Subject
Type Other
  Download (164KB)    Indexing metadata
 CTA
Copyright Transfer Agreement
Subject
Type CTA
  Download (571KB)    Indexing metadata
 Turnitin
Turnitin
Subject
Type Turnitin
  Download (1MB)    Indexing metadata
Keywords: Vaccines; Covid-19; Waste Management; Carbon Footprint

Article Metrics:

  1. KARMINI I, TARIGAN E. Indonesia’s confirmed coronavirus cases exceed 1 million [Internet]. 2021. Available from: https://apnews.com/article/pandemics-jakarta-indonesia-coronavirus-pandemic-asia-5eca0484e70f8b702fa6d4ea1e9c2780
  2. Suryahadi A, Al Izzati R, Yumna A. The Impact of Covid-19 and Social Protection Programs on Poverty in Indonesia. Bull Indones Econ Stud [Internet]. 2021 Sep 2;57(3):267–96. Available from: https://doi.org/10.1080/00074918.2021.2005519
  3. Sutomo S, Sagala S, Sutomo B, Liem W, Al Hamid H. Strengthening the strategic and operational response forreducing covid-19 transmission in Indonesia. Kesmas. 2021;16(1):3–10. https://doi.org/10.21109/kesmas.v16i3.5225
  4. Sastramidjaja Y, Rosli AA. Tracking the Swelling COVID-19 Vaccine Chatter on TikTok in Indonesia. Perspective. 2021;(82):1–12
  5. Aung TS, Luan S, Xu Q. Application of multi-criteria-decision approach for the analysis of medical waste management systems in Myanmar. J Clean Prod [Internet]. 2019;222:733–45. Available from: https://www.sciencedirect.com/science/article/pii/S0959652619307383.
  6. Su G, Ong HC, Ibrahim S, Fattah IMR, Mofijur M, Chong CT. Valorisation of medical waste through pyrolysis for a cleaner environment: Progress and challenges. Environ Pollut [Internet]. 2021;279:116934. Available from: https://www.sciencedirect.com/science/article/pii/S0269749121005169.
  7. Irfa’i M, Arifin A, Kriswandana F, Thohari I. The Design of Medical Waste Treatment in Public Health Center (MWT-P) for Reducing Total Bacteria Count in Banjarbaru. J Kesehat Lingkung. 2020;12(4):254. https://doi.org/10.20473/jkl.v12i4.2020.254-261
  8. Mahendradhata Y, Andayani NLPE, Hasri ET, Arifi MD, Siahaan RGM, Solikha DA, et al. The Capacity of the Indonesian Healthcare System to Respond to COVID-19 [Internet]. Vol. 9, Frontiers in Public Health . 2021. p. 887. Available from: https://www.frontiersin.org/article/10.3389/fpubh.2021.649819.
  9. Wulansari A, Sudarno, Muhammad F. Medical waste management at community health center: a literature review. E3S Web Conf [Internet]. 2020;202. Available from: https://doi.org/10.1051/e3sconf/202020206017
  10. Sangkham S. Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia. Case Stud Chem Environ Eng. 2020 Sep 1;2:100052. https://doi.org/10.1016/j.cscee.2020.100052
  11. Goswami M, Goswami PJ, Nautiyal S, Prakash S. Challenges and actions to the environmental management of Bio-Medical Waste during COVID-19 pandemic in India. Heliyon [Internet]. 2021;7(3):e06313. Available from: https://www.sciencedirect.com/science/article/pii/S2405844021004187.
  12. Sari MM, Inoue T, Septiariva IY, Suryawan IWK, Kato S, Harryes RK, et al. Identification of Face Mask Waste Generation and Processing in Tourist Areas with Thermo-Chemical Process. Arch Environ Prot. 2022;
  13. Sari MM, Yosafaat M, Nastiti AK, Septiariva IY, Utomo FS, Putri CA, et al. Planning of Single-Used Mask Waste Containers as Personal Protective Equipment: A Case Study of Jakarta City Station. Int J Public Heal Sci. 2022;11
  14. Cordova MR, Nurhati IS, Riani E, Nurhasanah, Iswari MY. Unprecedented plastic-made personal protective equipment (PPE) debris in river outlets into Jakarta Bay during COVID-19 pandemic. Chemosphere. 2021 Apr 1;268:129360. https://doi.org/10.1016/j.chemosphere.2020.129360
  15. Suryawan IWK, Sarwono A, Septiariva IY, Lee C-H. Evaluating Marine Debris Trends and the Potential of Incineration in the Context of the COVID-19 Pandemic in Southern Bali, Indonesia. J Ilm Perikan dan Kelaut. 2021;13(1). https://doi.org/10.20473/jipk.v13i2.25164
  16. Ruslinda Y, Aziz R, Putri FF. Analysis of Household Solid Waste Generation and Composition During The. Indones J Environ Manag Sustain. 2020;9
  17. Adi N. Polisi Selidiki Temuan Limbah Rapid Test di Pinggir Jalan Bekasi [Internet]. 2020. Available from: https://www.merdeka.com/peristiwa/polisi-selidiki-temuan-limbah-rapid-test-di-pinggir-jalan-bekasi.html
  18. Edika I. Alat Rapid Test dan Masker Medis Ditemukan di Tempat Sampah, Petugas Kebersihan Berisiko Covid-19 [Internet]. 2021. Available from: https://www.kompas.tv/article/211264/alat-rapid-test-dan-masker-medis-ditemukan-di-tempat-sampah-petugas-kebersihan-berisiko-covid-19
  19. Afandi A. Duh, Limbah Medis Alat Swab Antigen Berceceran di Pinggir Tol Simpang Bakauheni [Internet]. 2021. Available from: https://lampung.inews.id/berita/duh-limbah-medis-alat-swab-antigen-berceceran-di-pinggir-tol-simpang-bakauheni
  20. Selamet I. Terlalu! Ratusan Limbah Botol Vaksin Dibuang Sembarangan ke TPS Cianjur [Internet]. 2021. Available from: https://news.detik.com/berita-jawa-barat/d-5199576/terlalu-ratusan-limbah-botol-vaksin-dibuang-sembarangan-ke-tps-cianjur
  21. Sri Nurhayati Q. VAKSINASI COVID-19 DAN PENANGANAN LIMBAHNYA. Pus Penelit Badan Keahlian Sekr Jenderal DPR RI [Internet]. 2021;0(5):18–9. Available from: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiLhPetybDzAhUf7XMBHYFSDu8QFnoECCIQAQ&url=http%3A%2F%2Fberkas.dpr.go.id%2Fpuslit%2Ffiles%2Fisu_sepekan%2FIsu%2520Sepekan---III-P3DI-Februari-2021-189.pdf&usg=AOvVaw0dwq02lv-F4dERFklG
  22. Suryawan IWK, Prajati G, Afifah AS. Bottom and fly ash treatment of medical waste incinerator from community health centres with solidification/stabilization. Explor Resour Process Des Sustain URBAN Dev Proc 5th Int Conf Eng Technol Ind Appl 2018. 2019;2114(June):050023. https://doi.org/10.1063/1.5112467
  23. Pasek AD, Gultom KW, Suwono A. Feasibility of recovering energy from municipal solid waste to generate electricity. J Eng Technol Sci. 2013;45(3):241–56. https://doi.org/10.5614/j.eng.technol.sci.2013.45.3.3
  24. Adedokun OM, Akuma AH. Maximizing Agricultural Residues: Nutritional Properties of Straw Mushroom on Maize Husk, Waste Cotton and Plantain Leaves. Nat Resour. 2013;04(08):534–7. https://doi.org/10.4236/nr.2013.48064
  25. Akyıldız A, Köse ET, Yıldız A. Compressive strength and heavy metal leaching of concrete containing medical waste incineration ash. Constr Build Mater. 2017 May 1;138:326–32. https://doi.org/10.1016/j.conbuildmat.2017.02.017
  26. Li Y-M, Wang C-F, Wang L-J, Huang T-Y, Zhou G-Z. Removal of heavy metals in medical waste incineration fly ash by Na2EDTA combined with zero-valent iron and recycle of Na2EDTA: Acolumnar experiment study. J Air Waste Manage Assoc [Internet]. 2020 Sep 1;70(9):904–14. Available from: https://doi.org/10.1080/10962247.2020.1769767
  27. Liu F, Liu H-Q, Wei G-X, Zhang R, Liu G-S, Zhou J-H, et al. Detoxification of medical waste incinerator fly ash through successive flotation. Sep Sci Technol [Internet]. 2019 Jan 2;54(1):163–72. Available from: https://doi.org/10.1080/01496395.2018.1481091
  28. Vavva C, Lymperopoulou T, Magoulas K, Voutsas E. Chemical Stabilization of Fly Ash from Medical Waste Incinerators. Environ Process. 2020;7(2):421–41. https://doi.org/10.1007/s40710-020-00425-8
  29. Penman J, Gytarsky M, Hiraishi T, Irving W, Krug T. 2006 IPCC - Guidelines for National Greenhouse Gas Inventories. Directrices para los Inventar Nac GEI [Internet]. 2006;12. Available from: http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html
  30. Santos AF, Gaspar PD, de Souza HJL. Refrigeration of COVID-19 vaccines: Ideal storage characteristics, energy efficiency and environmental impacts of various vaccine options. Energies. 2021;14(7). https://doi.org/10.3390/en14071849
  31. Wu H, Tassou SA, Karayiannis TG, Jouhara H. Analysis and simulation of continuous food frying processes. Appl Therm Eng [Internet]. 2013;53(2):332–9. Available from: https://www.sciencedirect.com/science/article/pii/S1359431112002669.
  32. Gandhi K, K.L.Mokariya, Karvat D, Raval MK. Effect of PWM Inverter Used In VFD on Induction Motor Performance and Comparison with Direct on Line Start. Int J Eng Res Technol. 2014;3
  33. Aditya T. Research to study Variable Frequency Drive and its Energy Savings. Int J Sci Res. 2013;2(6):2319–7064
  34. Septiariva, Sarwono A, Suryawan IWK, Ramadan BS. Municipal Infectious Waste during COVID-19 Pandemic: Trends, Impacts, and Management. Int J Public Heal Sci [Internet]. 2022;11(2). Available from: http://doi.org/10.11591/ijphs.v11i2.21292
  35. Zhao H, Liu H, Wei G, Zhang N, Qiao H, Gong Y, et al. A review on emergency disposal and management of medical waste during the COVID-19 pandemic in China. Sci Total Environ [Internet]. 2022;810:152302. Available from: https://www.sciencedirect.com/science/article/pii/S0048969721073782.
  36. Chin AWH, Chu JTS, Perera MRA, Hui KPY, Yen H-L, Chan MCW, et al. Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe [Internet]. 2020;1(1):e10. Available from: https://doi.org/10.1016/S2666-5247(20)30003-3
  37. Rahimi NR, Fouladi-Fard R, Aali R, Shahryari A, Rezaali M, Ghafouri Y, et al. Bidirectional association between COVID-19 and the environment: A systematic review. Environ Res [Internet]. 2021;194:110692. Available from: https://www.sciencedirect.com/science/article/pii/S0013935120315917.

Last update:

No citation recorded.

Last update: 2024-03-26 19:16:38

No citation recorded.