skip to main content

Penilaian Kesehatan Sungai Menggunakan Metode Biotik dan Fisik di Sungai Boyong, Sleman, Yogyakarta

1Program Studi Biologi, Fakultas Sains dan Teknologi, UIN Sunan Kalijaga, Yogyakarta, Indonesia

2Prodi Teknik Arsitektur, Fakultas Sains dan Teknologi, UIN Sunan Kalijaga, Yogyakarta, Indonesia

3Magister Teknik Informatika, Fakultas Sains dan Teknologi, UIN Sunan Kalijaga, Yogyakarta, Indonesia

Open Access Copyright 2024 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Latar belakang: Penilaian kesehatan sungai merupakan upaya penting dalam membantu memonitor keseimbangan ekosistem sungai.  Penelitian dilakukan untuk mendapatkan penilaian kualitas Sungai Boyong sebagai hulu dari Sungai Code yang memasok air ke wilayah perkotaan Yogyakarta dengan menggunakan kombinasi metode biotik dan fisik untuk mendapatkan hasil yang lebih komprehensif.

Metode: Penilaian kesehatan sungai dilakukan secara kuantitatif dan kualitatif dengan dua metode yakni metode biotik yang terdiri atas metode biotilik dan metode RHA, serta metode pengamatan fisik. Metode biotilik merupakan metode pengukuran kuantitif terhadap komunitas makroinvertebrata akuatik. Analisis data biotik dengan menghitung biotik indeks menggunakan panduan biotilik oleh Ecoton. Sampel yang diambil berupa makroinvertebrata akuatik dengan menggunakan jaring. Sampel tumbuhan diambil pada transek yang berada pada verge, bank, dan in-stream. Analisis data riparian vegetation menggunakan indeks Riparian Health Assessment. Sedangkan metode pengamatan fisik menggunakan analisis dari panduan biotilik oleh Ecoton.

Hasil: Hasil penelitian menunjukkan bahwa dengan menggunakan metode biotilik diketahui bahwa stasiun 1, 2, dan 3 berada pada kondisi sedang, meskipun nilai indeks biotilik stasiun 2 lebih rendah daripada yang lain. Penggunaan metode RHA menunjukkan bahwa kondisi ekosistem riparian di stasiun  1 dan 3 lebih baik daripada stasiun 2. Sedangkan dengan metode pengamatan fisik diketahui bahwa kondisi stasiun 1 dan 3 berada pada kategori sehat, dan stasiun 2 masuk dalam kategori kurang sehat.

Simpulan: Penelitian menyimpulkan bahwa kondisi ekosistem Sungai Boyong yang paling baik di Stasiun 2 dan yang kurang baik pada stasiun 1 dan 3.

 

ABSTRACT

Title: River Health Assessment using Biotic and Physical Methods in Boyong River, Sleman, Yogyakarta

Background: River health assessment is important to monitor the balance of river ecosystem.. The study was conducted to assess  the quality of Boyong River as the upstream of the Code River which supplies water to the urban area of Yogyakarta using a combination of biotic and physical methods for a comprehensive result.  

Method: River health assessment was carried out by two methods,  first was the biotic methods which consisted the biotilik method and the RHA method, and  second was the physical observation method . The biotilik method is a quantitative measurement method of aquatic macroinvertebrate communities. Analysis of biotic data by calculating biotic index using biotilik guidance by Ecoton. The samples taken were aquatic macroinvertebrates using nets. Plant samples were taken on transects located on verge, bank, and in-stream. Analysis of riparian vegetation data using the Riparian Health Assessment index. While the physical observation method uses analysis by Ecoton.

Result: The results showed that using the biotilik method it was known that stations 1, 2, and 3 were in moderate condition, although the biotilic index value of station 2 was lower than the others. The use of the RHA method shows that the riparian ecosystem conditions at stations 1 and 3 are better than at station 2. Meanwhile, with the physical observation method, it is known that the condition of stations 1 and 3 is in the healthy category, and station 2 is included in the unhealthy category.

Conclusion:  It was concluded that the ecosystem condition of Boyong River was best at Station 2 and not good at Stations 1 and 3.

Note: This article has supplementary file(s).

Fulltext View|Download |  Turnitin
Turnitin
Subject
Type Turnitin
  Download (2MB)    Indexing metadata
 CTA
Copyrigh Transfer Agreement
Subject
Type CTA
  Download (591KB)    Indexing metadata
 ES
Etichal Statement
Subject
Type ES
  Download (591KB)    Indexing metadata
Keywords: Asesmen Fisik; Biotilik; Kesehatan Riparian; Sungai Boyong

Article Metrics:

  1. Lin L, Yang H, Xu X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front Environ Sci. 2022;10(880246):1-13. https://doi.org/10.3389/fenvs.2022.880246
  2. Hasan MdK, Shahriar A, Jim KU. Water Pollution in Bangladesh and Its Impact on Public Health. Heliyon. 2019;5(8):1-23. https://doi.org/10.1016/j.heliyon.2019.e02145
  3. Afroz R, Rahman A. Health Impact of River Water Pollution in Malaysia. Int J Adv Appl Sci. Mei 2017;4(5):78–85. https://doi.org/10.21833/ijaas.2017.05.014
  4. Chen B, Wang M, Duan M, Ma X, Hong J, Xie F, et al. In Search of Key: Protecting Human Health and the Ecosystem from Water Pollution in China. Journal of Cleaner Production. 2019;228(1):101–111. https://doi.org/10.1016/j.jclepro.2019.04.228
  5. Xia Y, Zhang M, Tsang DCW, Geng N, Lu D, Zhu L, et al. Recent Advances in Control Technologies for Non-point Source Pollution with Nitrogen and Phosphorous from Agricultural Runoff: Current Practices and Future Prospects. Appl Biol Chem. 2020;63(1):1-8. https://doi.org/10.1186/s13765-020-0493-6
  6. Parris K. Impact of Agriculture on Water Pollution in OECD Countries: Recent Trends and Future Prospects. Int J of Wat Res Dev. 2011;27(1):33–52. https://doi.org/10.1080/07900627.2010.531898
  7. Wear SL, Acuña V, McDonald R, Font C. Sewage Pollution, Declining Ecosystem Health, and Cross-sector Collaboration. Biol Conserv. Maret 2021;255(1):1-9. https://doi.org/10.1016/j.biocon.2021.109010
  8. Zhao YW, Zhou LQ, Dong BQ, Dai C. Health Assessment for Urban Rivers Based on the Pressure, State and Response Framework—A Case Study of the Shiwuli River. Ecol Indic. 2019;99(1):324–331. https://doi.org/10.1016/j.ecolind.2018.12.023
  9. Widi S. Indeks Kualitas Air RI Naik pada 2022, Tertinggi dalam 8 Tahun [Internet]. Jakarta, Indonesia: DataIndonesia; 2023 Jan. Available at: https://dataindonesia.id/energi-sda/detail/indeks-kualitas-air-ri-naik-pada-2022-tertinggi-dalam-8-tahun
  10. Nasir M, Muchlisin Z, Saiful S, Suhendrayatna S, Munira M, Iqhrammullah M. Heavy Metals in the Water, Sediment, and Fish Harvested from the Krueng Sabee River Aceh Province, Indonesia. J Ecol Eng. 2021;22(9):224–231. https://doi.org/10.12911/22998993/141643
  11. Buwono NR, Risjani Y, Soegianto A. Distribution of Microplastic in Relation to Water Quality Parameters in the Brantas River, East Java, Indonesia. Environ Technol Innov. 2021;24(101915):1-10. https://doi.org/10.1016/j.eti.2021.101915
  12. Oginawati K, Kahfa AN, Susetyo SH. The Effects of the Use of Organochlorine and Organophosphate Pesticides in Agriculture and Households on Water and Sediment Pollution in the Cikeruh River, Indonesia. Int J River Basin Manag. 2023;21(4):651–657. https://doi.org/10.1080/15715124.2022.2079654
  13. Salsabila NF, Raharjo M, Joko T. Indeks Pencemaran Air Sungai dan Persebaran Penyakit yang Ditularkan Air (Waterborne Diseases): Suatu Kajian Sistematis. EOHSJ. 2023;4(1):2-24. https://doi.org/10.24853/eohjs.4.1.24-34
  14. Saraswati SP, Kironoto BA. Kajian Bentuk dan Sensitivitas Rumus Indeks Pi, Storet, CCME untuk Penentuan Status Mutu Perairan Sungai Tropis di Indonesia. J People Environ. 2014;21(2):129-142
  15. Aristawidya M, Hasan Z, Iskandar I, Yustiawati Y, Herawati H. Status Pencemaran Situ Gunung Putri di Kabupaten Bogor Berdasarkan Metode STORET dan Indeks Pencemaran. Limnotek : Perairan Darat Tropis di Indonesia [Internet]. 15 Juni 2020 [dikutip 7 Desember 2023];27(1). Availabe at: https://limnotek.limnologi.lipi.go.id/index.php/limnotek/article/view/311.
  16. Zulhusni Zakaria M, Mohamed M. Comparative Analysis of Biotic Indices in Water Quality Assessment: Case Study at Sg. Bantang, Johor. IOP Conf Ser: Earth Environ Sci. 2019;269(1):1-12. https://doi.org/10.1088/1755-1315/269/1/012047
  17. Blakely TJ, Eikaas HS, Harding JS. The Singscore: A Macroinvertebrate Biotic Index for Assessing the Health of Singapore’s Streams and Canals. RBZ. 2014;1(62):540–548
  18. Sueb S, Shofiyah A, Al-Muhdhar MHI, Yanuwiadi B. Quality of Brantas River Based on the Existence of Macrozoobentos Through Biotilik Methods. In: International Conference on Life Sciences and Technology (Icolist 2020) [Internet]. Malang, Indonesia: Universitas Negeri Malang; 2021 [dikutip 7 Desember 2023]. hlm. 030121. Available at: https://pubs.aip.org/aip/acp/article/637037
  19. Nugrahaningrum A. Macroinvertebrate Diversity Role in Water Quality Assessment of Winongo and Gajah Wong Rivers, Yogyakarta, Indonesia. Bonorowo Wetlands. 2017;7(1):31–37. https://doi.org/10.13057/bonorowo/w070107
  20. Trisnaini I, Kumala Sari TN, Utama F. Identifikasi Habitat Fisik Sungai dan Keberagaman Biotilik Sebagai Indikator Pencemaran Air Sungai Musi Kota Palembang. JKLI. 2018;17(1):1-8. https://doi.org/10.14710/jkli.17.1.1-8
  21. Sudaryanti S, Trihadiningrum Y, Hart BT, Davies PE, Humphrey C, Norris R, et al. Assessment of the Biological Health of the Brantas River, East Java, Indonesia Using the Australian River Assessment System (AUSRIVAS) Methodology. Aquat Ecol. 2001;35(2):135–146. https://doi.org/10.1023/A:1011458520966
  22. Kemper N. Riparian Vegetation Index. South Africa:Water Research Commission Report. 2001;850(3):1-33
  23. Singh PK, Saxena S. Towards Developing A River Health Index. Ecol Indic. 2018;85(1):999–1011. https://doi.org/10.1016/j.ecolind.2017.11.059
  24. Castro‐López D, Guerra‐Cobián V, Prat N. The Role of Riparian Vegetation in the Evaluation of Ecosystem health: The Case of Semiarid Conditions in Northern Mexico. River Res Apl. 2019;35(1):48–59. https://doi.org/10.1002/rra.3383
  25. Department for Environment and Water. Riparian Habitat Assessment [Internet]. The Government of South Australia; 2012. Available at: https://cdn.environment.sa.gov.au/greenadelaide/images/Riparian-habitat-assessment.pdf
  26. Hidayat M, Legono D, Wignyosukarto B, Jayadi R, Rahardjo AP, Hairani A, et al. Flow Behavior of Boyong River as Revealed by Long-term Hydro-monitoring System. IOP Conf Ser: Earth Environ Sci. 2021;930(1):1-10. https://doi.org/10.1088/1755-1315/930/1/012023
  27. Wahyuni S, Rahardjo AP, Sujono J. Early Warning System for Flash Floods Based on Radar X-band Data in Boyong River and Krasak River Area, Merapi Mountain. AIP Conf Proceeding. 2023;2846(1):1-9. https://doi.org/10.1063/5.0154313
  28. Rini D. Ayo Cintai Sungai: Panduan Penilaian Kesehatan Sungai Melalui Pemeriksaan Habitat Sungai dan Biotilik. Ecoton. Gresik. Gresik, Jawa Timur: Ecoton, 2011
  29. Kurniawan VO, Hadmoko DS. Pemodelan Aliran Lahar Gunung Api Merapi untuk Perhitungan Risiko Kerugian Pada Penggunaan Lahan Terdampak di Bantaran Sungai Boyong, Pakem, Sleman, DI Yogyakarta. J Geogr Trop Environ. 2020;3(2):22-44. https://doi.org/10.7454/jglitrop.v3i2.64
  30. Priyono KD, Rosari TO. Analisis Risiko Bencana Erupsi Gunungapi Merapi terhadap Rencana Tata Ruang Kabupaten Sleman Daerah Istimewa Yogyakarta. JJPG. 2023;11(1):1–10. https://doi.org/10.23887/jjpg.v11i1.52229
  31. School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia, Ab Hamid S, Md Rawi CS, et al. Application of Aquatic Insects (Ephemeroptera, Plecoptera and Trichoptera) in Water Quality Assessment of Malaysian Headwater. TLSR 2017; 28(2): 143–162. https://doi.org/10.21315/tlsr2017.28.2.11
  32. Wibowo DN, Setijanto S, Santoso S. Short Communication: Benthic Macroinvertebrate Diversity as Biomonitoring of Organic Pollutions of River Ecosystems in Central Java, Indonesia. Biodiversitas. 2017;18(2):671–676. https://doi.org/10.13057/biodiv/d180233
  33. Zhen X, Liu L, Wang X, Zhong G, Tang J. Fates and Ecological Effects of Current-use Pesticides (CUPs) in A Typical River-Estuarine System of Laizhou Bay, North China. Environmental Pollution. 2019;252(1):573–579. https://doi.org/10.1016/j.envpol.2019.05.141
  34. Liess M, Liebmann L, Vormeier P, Weisner O, Altenburger R, Borchardt D, et al. Pesticides Are the Dominant Stressors for Vulnerable Insects in Lowland Streams. Water Res. 2021;201(117262):1-12. https://doi.org/10.1016/j.watres.2021.117262
  35. Bae MJ, Park YS. Evaluation of Precipitation Impacts on Benthic Macroinvertebrate Communities at Three Different Stream Types. Ecol Indic. 2019;102:446–56. https://doi.org/10.1016/j.ecolind.2019.02.060
  36. Selfia Y. Analysis of Composition and Structure of Riparian Vegetation In The Batang Arau River Flow Region, Padang City, West Sumatera. Jurnal Serambi Biologi 2021;6(1): 47–64
  37. Pramadaningtyas PS, Chandrasari N, Izdihar RS, Iqbal WM, Cahyaningsih AP, Setyawan AD. Analysis of Riparian Vegetation in the Siwaluh River, Karanganyar District, Central Java, Indonesia. Int J Bonorowo Wetlands. 2023;13(2):45-56. https://doi.org/10.13057/bonorowo/w130201
  38. Ni’am AC, Sari AN, Nabilah KB, Terrukeni GJ, Syah CB. Biomonitoring Kualitas Air Sungai Kalibokor Sebrang Institut Teknologi Adhi Tama Surabaya Menggunakan Metode Biotilik. MITL. 2022;7(2):48-55. https://doi.org/10.33084/mitl.v7i2.3700
  39. Feio MJ, Hughes RM, Callisto M, Nichols SJ, Odume ON, Quintella BR, et al. The Biological Assessment and Rehabilitation of the World’s Rivers: An Overview. Water. 2021;13(3):367-371. doi: 10.3390/w13030371.https://doi.org/10.3390/w13030371
  40. Sulistiyowati E, Uyun S. The Evaluation of a Website for Participatory Water Quality Monitoring of Rivers in Indonesia: Dalam Yogyakarta, Indonesia; 2022 [dikutip 31 Oktober 2022]. Tersedia pada: https://www.atlantis-press.com/article/125966906.
  41. Latsiou A, Kouvarda T, Stefanidis K, Papaioannou G, Gritzalis K, Dimitriou E. Pressures and Status of the Riparian Vegetation in Greek Rivers: Overview and Preliminary Assessment. Hydrology. 2021;8(1):37-55. https://doi.org/10.3390/hydrology8010055
  42. Ardiansah D, Adi AS. Peran LSM ECOTON Dalam Upaya Memperjuangkan Hak Atas Lingkungan Hidup Masyarakat Daerah Aliran Sungai Brantas. KMKN. 2021;10(3):633–649. https://doi.org/10.26740/kmkn.v10n3.p633-649

Last update:

No citation recorded.

Last update: 2024-05-17 16:34:46

No citation recorded.