skip to main content

Kadar Nitrat dan Nitrit Pada Air Minum Isi Ulang (AMIU)

Jurusan Kesehatan Lingkungan, Poltekkes Kemenkes Semarang, Indonesia

Open Access Copyright 2025 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Latar belakang:.Air Minum Isi Ulang (AMIU) berpotensi menimbulkan gangguan kesehatan jika kualitasnya tidak memenuhi syarat. Nitrat dan nitrit merupakan parameter wajib bagi kualitas air minum. Kadar nitrat dan nitrit yang melebihi baku mutu berdampak pada efek hematologi dan neurologis. Berdasarkan laporan menunjukkan bahwa pengelola Depot belum rutin melakukan pemeriksaan kualtas AMIU secara fisik, kimia dan mikrobologi. Tujuan penelitian untuk menganalisis pemodelan suhu, kekeruhan, TDS dan pH dengan kadar nitrat dan nitrit pada AMIU.

Metode: Jenis penelitian observasional anaitik dengan design study crossectional. Populasi dalam penelitian ini adalah AMIU di 18 Depot. Sampel adalah sebagian AMIU yang diambil dari 18 Depot. Teknik pengumpulan data melalui wawancara, observasi dan pemeriksaan sampel meliputi suhu, kekeruhan, TDS, pH, nitrat dan nitrit pada AMIU. Data yang terkumpul, kemudian diolah dan dianalisis secara statistik menggunakan uji regresi linear sederhana dan berganda untuk memprediksi nilai suhu, kekeruhan, TDS dan pH dengan kadar nitrat dan nitrit.

Hasil: Hasil pemeriksaan sampel AMIU menunjukkan bahwa suhu (Mean=24,828; Median=24,950; Min-Max=23,400-26,000 dan Standar Deviasi (SD)=0,765), kekeruhan (Mean=0,286; Median=0,200; Min-Max=0,070-0,840 dan SD=0,229%), TDS (Mean=94,222; Median=90,000; Min-Max=85,000-116,000 dan SD=9,143), pH (Mean=7,120; Median=7,205; Min-Max=5,900-7,930 dan SD=0,618), nitrat (Mean=0,698; Median=0,058; Min-Max=0,010-0,183 dan Standar Deviasi (SD)=0,051) dan nitrit (Mean=0,039; Median=0,029; Min-Max=0,010-0,133 dan SD=0,033). Hasil uji regresi linear sederhana menunjukkan bahwa terdapat hubungan kekeruhan dan TDS dengan kadar Nitrat dan nitrit. Persamaan model regresinya adalah nitrat=0,231+0,037*kekeruhan+0,003*TDS dan nitrit=-0,066+0,118*kekeruhan+0,001*TDS.

Simpulan: Terdapat hubungan kekeruhan dan TDS terhadap kadar nitrat dan nitrit. Semakin meningkatnya  kekeruhan dan TDS, diprediksi dapat meningkatkan kadar nitrat dan nitrit pada AMIU.

 

ABSTRACT

Title: Nitrate and Nitrite Levels in Refillable Drinking Water

Background:. Refillable drinking water has the potential to cause health problems if the quality does not meet the requirements. Nitrates and nitrites are mandatory parameters for the quality of drinking water. Nitrate and nitrite levels that exceed quality standards have an impact on hematological and neurological effects. Based on the report shows that Depot managers have not routinely checked the quality of refillable drinking water physically, chemically and microbiologically. The objective of the study was to analyze the modeling of temperature, turbidity, TDS and pH with nitrate and nitrite levels in refill drinking water.

Methods: Type of anaitic observational study with cross-sectional design study. The population in this study was refillable drinking water in 18 depots. The sample was a portion of refillable drinking water taken from 18 depots.. Data collection techniques through interviews, observations and sample testing include temperature, turbidity, TDS, pH, nitrate and nitrite in refillable drinking water. The data collected, then processed and analyzed statistically using a simple linear regression test and multiple to predict the value of temperature, turbidity, TDS and pH with nitrate and nitrite levels.

Results: : The results of the examination of the refill drinking water sample showed that the temperature (Mean=24.828; Median=24,950; Min-Max=23,400-26,000 and Standard Deviation (SD)=0.765), turbidity (Mean=0.286; Median=0.200; Min-Max=0.070-0.840 and SD=0.229%), TDS (Mean=94.222; Median=90,000; Min-Max=85,000-116,000 and SD=9,143), pH (Mean=7,120; Median=7,205; Min-Max=5,900-7,930 and SD=0.618), nitrate (Mean=0.698; Median=0.058; Min-Max=0.010-0.183 and Standard Deviation (SD)=0.051) and nitrite (Mean=0.039; Median=0.029; Min-Max=0.010-0.133 and SD=0.033). The results of a simple linear regression test showed that there was a relationship between turbidity and TDS with nitrate and nitrite levels. The regression model equation is nitrate=0.231+0.037*turbidity+0.003*TDS and nitrite=-0.066+0.118*turbidity +0.001*TDS.

Conclusion: There is a relationship between turbidity and TDS on nitrate and nitrite rates. The increasing turbidity and TDS are predicted to increase nitrate and nitrite levels in refill drinking water.

Note: This article has supplementary file(s).

Fulltext View|Download |  Turnitin
Turnitin
Subject
Type Turnitin
  Download (2MB)    Indexing metadata
 ES
Etichal Statement
Subject
Type ES
  Download (70KB)    Indexing metadata
 CTA
Copyrigh Transfer Agreement
Subject
Type CTA
  Download (24KB)    Indexing metadata
Keywords: Nitrat; Nitrit; Air Minum Isi Ulang

Article Metrics:

  1. Kemenkes RI. Peraturan Menteri Kesehatan No 2 Tahun 2023 tentang kesehatan lingkungan. Jakarta: Kemenkes RI; 2023
  2. Mairizki F. Analisa Kualitas Air Minum Isi Ulang Di Sekitar Kampus Universitas Islam Riau. Jurnal Katalisator. 2017;2(1):9. https://doi.org/10.22216/jk.v2i1.1585
  3. BPS. Distribusi Persentase Rumah Tangga Menurut Provinsi dan Sumber Air Minum Tahun 2020 [Internet]. [cited 2024 Oct 15]. Available from: https://www.bps.go.id/id/statistics-table/3/YzBaMlduSlFVbTVrUnpWeU9YRTJka0pVTTFkU1FUMDkjMw==/distribusi-persentase-rumah-tangga-menurut-provinsi-dan-sumber-air-minum--2023.html?year=2020
  4. BPS. Distribusi Persentase Rumah Tangga Menurut Provinsi dan Sumber Air Minum Tahun 2023 [Internet]. [cited 2024 Oct 15]. Available from: https://www.bps.go.id/id/statistics-table/3/YzBaMlduSlFVbTVrUnpWeU9YRTJka0pVTTFkU1FUMDkjMw==/distribusi-persentase-rumah-tangga-menurut-provinsi-dan-sumber-air-minum--2023.html?year=2023
  5. Triwuri NA, Prasadi O, Hazimah. Uji Kualitas Air Minum Isi Ulang Berdasarkan Mineral Mikro. Jurnal Teknik Ibnu Sina. 2020;5(1):31–6. DOI: https://doi.org/10.36352/jt-ibsi.v5i01.70
  6. Kesumaningrum F, Ismayanti NA, Muhaimin M. Analisis Kadar Logam Fe, Cr, Cd dan Pb dalam Air Minum Isi Ulang Di Lingkungan Sekitar Kampus Universitas Islam Indonesia Yogyakarta Menggunakan Spektrofotometer Serapan Atom (SSA). IJCA (Indonesian Indonesia Journal Chemical Analysis. 2019;2(01):41–6. https://doi.org/10.20885/ijca.vol2.iss1.art6
  7. Syahril M, Nyorong M, Aini N. Pelaksanaan Hygene Dan Sanitasi Pada Depot Air Minum Isi Ulang. J Kesmas Prima Indones. 2022;2(1):46–53. https://doi.org/10.34012/jkpi.v2i1.895
  8. Kemenkes RI. Profil Kesehatan Indonesia.. Jakarta: Kemenkes RI; 2020
  9. Kemenkes RI. Profil Kesehatan Indonesia..Jakarta: Kemenkes RI; 2023
  10. Dinkes Kab. Banyumas. Profil Kesehatan Kab. Banyumas Tahun 2020. Banyumas: Pemerintah Kab. Banyumas; 2020
  11. Dinkes Kab. Banyumas. Profil Kesehatan Kab. Banyumas Tahun 2023. Banyumas: Pemerintah Kab. Banyumas; 2023
  12. Trisnaini I, Sunarsih E, Septiawati D. Analisis Faktor Risiko Kualitas Bakteriologis Air Minum Isi Ulang Di Kabupaten Ogan Ilir. Jurnal Ilmu Kesehatan Masyarakat. 2018;9(1):28–40. https://doi.org/10.26553/jikm.2018.9.1.28-40
  13. Puspitasari A, Hikmah B N, Rahman H. Study of Bacteriological Quality of Refill Drinking Water Depot in the Working Area of Tamangapa Public Health Center, Makassar City. Window of Public Health Journal. 2020;1(1):16–2. https://doi.org/10.33096/woph.vi.28
  14. Puspitarini R, Ismawati R. Kualitas Air Baku Untuk Depot Air Minum Air Isi Ulang (Studi Kasus Di Depot Air Minum Isi Ulang Angke Tambora). DAMPAK: Jurnal Teknik Lingkungan Universitas Andalas. 2022;19(1):1. https://doi.org/10.25077/dampak.19.1.1-7.2022
  15. Ardhaneswari M, Wispriyono B. Analisis Risiko Kesehatan Akibat Pajanan Senyawa Nitrat dan Nitrit Pada Air Tanah di Desa Cihambulu Subang. Jurnal Kesehatan Lingkungan Indonesia. 2022;21(1):65-72. https://doi.org/10.14710/jkli.21.1.65-72
  16. Manassaram DM, Backer LC, Messing R, Fleming LE, Luke B, Monteilh CP. Nitrates in drinking water and methemoglobin levels in pregnancy: a longitudinal study. Environmental Health. 2010;9(1):1-12. https://doi.org/10.1186/1476-069X-9-60
  17. Alidadi H, Zarif Gharaati Oftadeh B, Belin Tavakoly Sany S, Saghi M, Tafaghodi M, Hossein Shamszadeh S, et al. Risk Assessment of Nitrite and Nitrate in the Drinking Water in Mashhad. Iran Journal Nutrition Fasting Health. 2019;7(1):58–67
  18. Rezaei H, Jafari A, Kamarehie B, Fakhri Y, Ghaderpoury A, Karami M, et al. Health-risk assessment related to the fluoride, nitrate, and nitrite in the drinking water in the Sanandaj, Kurdistan County, Iran. Human Ecological Risk Assessment Journal. 2018;25(5):1245–50. https://doi.org/10.1080/10807039.2018.1463510
  19. Puskesmas Baturraden I. Profil Puskesmas Baturraden I. Banyumas; Puskesmas Baturraden I: 2023
  20. Puskesmas Baturraden II. Profil Pskesmas Baturraden II. Banyumas; Puskesmas Baturraden II; 2023
  21. Nuryanto N, Ma’aruf F, Purnomo BC. Analisis Kualitas Proses Layanan Kesehatan Lingkungan Dengan Pendekatan Quality Improvment Process (QIP). Jurnal Kesehatan Lingkungan Indonesia. 2024;23(2):215–25. https://doi.org/10.14710/jkli.23.2.215-225
  22. Fmea A, Dyah E, Mawarni A. Kajian Kualitas Produksi Depot Air Minum Isi Ulang Kecamatan Genteng Kota Surabaya dengan Metode Failure Mode and Effect. Jurnal Teknik ITS. 2020;10(2):88–93. https://doi.org/10.12962/j23373539.v10i2.64156
  23. Wahyuni TI, Widyastuti E, Sambodo A, Yuswani R. Pedoman Pengawasan Higiene Sanitasi Pangan Berbasis Risiko. Jakarta: Kemenkes RI; 2021
  24. Novroza HE, Hestiningsih R, Kusariana N, Yuliawati S. Hubungan Hygiene Sanitasi Kondisi Depot Air Minum dengan Kualitas Mikrobiologis Air Minum Isi Ulang di Kecamatan Banyumasik Semarang. Jurnal Kesehatan Masyarakat. 2020;8:233–237
  25. Hasibuan ESF, Supriyantini E, Sunaryo S. Pengukuran Parameter Bahan Organik Di Perairan Sungai Silugonggo, Kecamatan Juwana, Kabupaten Pati. Buletin Oseanografi Marina. 2021;10(3):299–306. https://doi.org/10.14710/buloma.v10i3.32345
  26. Nurhajawarsi N, Haryanti T. Analisis Kualitas Air Sumur Sekitar Kawasan Industri Bantaeng (Kiba). Sebatik. 2023;27(1):43–51. https://doi.org/10.46984/sebatik.v27i1.2258
  27. Singkam AR, Lestari IL, Agustin F, Miftahussalimah, Pingkan Luthfiyyah Anggie Yovita Maharani RL. Perbandingan Kualitas Air Sumur Galian Dan Bor Berdasarkan Parameter Kimia dan Parameter Fisika. Biodusains Jurnal Pendidikan Biologi dan Sains. 2021;4(2):155–65. https://doi.org/10.31539/bioedusains.v4i2.2346
  28. Lantapon H, Pinontoan OR, Akili RH, Ratulangi S. Analisis Kualitas Air Sumur Berdasarkan Parameter Fisik dan Derajat Keasaman (pH) di Desa Moyongkota Kabupaten Bolaang Mongondow Timur. Jurnal KESMAS. 2019;8(7):161–166. https://ejournal.unsrat.ac.id/index.php/kesmas/article/view/26584
  29. Aji MT, Jailani AQ. Study of Groundwater Quality in Magelang City Due to the Impact of Domestic and Industrial Waste. J Aquac Sci. 2020;5(2):120–128. https://doi.org/10.31093/joas.v5i2.122
  30. Sailaukhanuly Y, Azat S, Kunarbekova M, Tovassarov A, Toshtay K, Tauanov Z, et al. Health Risk Assessment of Nitrate in Drinking Water with Potential Source Identification: A Case Study in Almaty, Kazakhstan. International Journaal Environmental Research Public Health. 2024;21(1). https://doi.org/10.3390/ijerph21010055
  31. Windasari W, Sari EM. Kandungan Nitrit (No2) Dan Nitrat (No3) Dalam Air Minum Di Desa Ciketing Udik Kecamatan Bantar Gebang Kota Bekasi. Jurnal Mitra Kesehatan. 2021;3(2):70–75. https://doi.org/10.47522/jmk.v3i2.79
  32. Claon JS, Serge KK, Laurent S, Arsène SM, Roland NK, Aïcha T, et al. Assessment of Nitrates and Nitrites in Borehole Water from the Southern and the Northern Region of Côte d’Ivoire (West Africa). Open Journal of Modern Hydrology. 2024;14(02):87–105. https://doi.org/10.4236/ojmh.2024.142006
  33. Joseph N, Sangster J, Topping M, Bartelt-Hunt S, Kolok AS. Evaluating the impact of turbidity, precipitation, and land use on nutrient levels and atrazine concentrations in Illinois surface water as determined by citizen scientists. Science Total Environmental. 2022;850:158081. https://doi.org/10.1016/j.scitotenv.2022.158081
  34. Tokatlı C, Islam ARMT, Muhammad S. Temporal variation of water quality parameters in the lacustrine of the Thrace Region, Northwest Türkiye. Environmental Science Pollution Research. 2024;31(8):11832–11841. https://doi.org/10.1007/s11356-024-31912-2
  35. Boyd CE. Water Quality: An Introduction. Third, editor. USA: Springer; 2020. https://doi.org/10.1007/978-3-030-23335-8
  36. Ha NT, Nguyen HQ, Truong NCQ, Le TL, Thai VN, Pham TL. Estimation of nitrogen and phosphorus concentrations from water quality surrogates using machine learning in the Tri An Reservoir, Vietnam. Environ Monit Assess. 2020;192(12):789. https://doi.org/10.1007/s10661-020-08731-2

Last update:

No citation recorded.

Last update: 2025-05-06 11:00:29

No citation recorded.