skip to main content

Kinetika Degradasi Air Limbah Menggunakan Media Tutup Botol Plastik PET dengan Reaktor Aerobik MBBR

1Program Pascasarjana Ilmu Lingkungan, Sekolah Pascasarjana, Universitas Diponegoro, Semarang, Jawa Tengah, Indonesia

2Jurusan Teknik Kimia Universitas Diponegoro, Semarang, Jawa Tengah, Indonesia

3Jurusan Teknik Lingkungan Universitas Diponegoro, Semarang, Jawa Tengah, Indonesia

4 Departemen Statistika Universitas Diponegoro, Semarang, Jawa Tengah,, Indonesia

View all affiliations
Open Access Copyright 2025 Jurnal Kesehatan Lingkungan Indonesia under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Latar belakang: Tujuan penelitian adalah untuk menganalisis laju kinetika degradasi pengolahan air limbah biologi menggunakan model Michaelis-Menten dan regresi linier.

Metode: Jenis penelitian ini adalah eksperimen. Sampel diambil dengan teknik grab sample dan diambil pada 4 titik dengan jumlah 70 liter yang dibagi sama rata pada tiap titik. Penentuan model dilakukan dengan menggunakan persamaan Michaelis-Menten dan regresi linier. Reaktor terbuat dari fiberglass, berukuran panjang 40 cm, lebar 40 cm, tinggi 50 cm, dan tebal 4 mm. Reaktor memiliki kapasitas 80 L. Inlet dan Outlet air limbah dirancang dengan menggunakan pipa PVC. Percobaan dijalankan selama 30 hari. Total luas permukaan semua media adalah 14.130 cm2. Analisis data menggunakan uji regresi linear dan persamaan michaelis-menten.

Hasil: Hasil pemodelan persamaan Michaelis-Menten menunjukkan nilai R2 mendekati sempurna, yang menunjukkan kedekatan dengan kondisi lapangan sebenarnya. Kondisi aerobik berlangsung lebih lama dan memungkinkan terjadinya degradasi BOD, COD, dan TSS. Konstanta Menten untuk menghilangkan BOD, COD, dan TSS masing-masing adalah 17,7, 80,5, dan 135. Nilai R2 yang diperoleh dengan menggunakan model regresi linier mendekati angka sempurna, yaitu untuk parameter BOD (0,995), COD (0, 9934), dan TSS (0,9665). dengan nilai y masing-masing -0,0613, -0,0467, -0,042. Persamaan yang diperoleh dari hasil pemodelan regresi adalah Y = 31,245-0,030X1 + 0,015X2 + 0,044X3 + e.

Simpulan: Model yang digunakan mampu memprediksi secara akurat degradasi BOD, COD, dan TSS dalam kondisi aerobik. Studi ini menyarankan pengoptimalan kondisi aerobik dalam praktik pengolahan air limbah untuk meningkatkan efisiensi penghilangan BOD, COD, dan TSS, menggunakan model Michaelis-Menten untuk pengurangan polutan yang efektif. Besarnya gelembung udara yang dihasilkan aerator tidak dikontrol sehingga tidak dapat dimaksimalkan laju aliran udara yang masuk pada reaktor yang mungkin akan berpengaruh pada hasil kerja reaktor. Penelitian ini meningkatkan pengetahuan pengolahan air limbah dengan menunjukkan efektivitas model Michaelis-Menten dalam menganalisis laju degradasi dan menekankan penggunaan media plastik, sehingga menawarkan wawasan berharga untuk penelitian masa depan.

 

Title:  Wastewater Degradation Kinetics Using PET Plastic Bottle Capping Media with MBBR Aerobic Reactor

Background: The purpose of this study was to analyze the rate of degradation kinetics of biological wastewater treatment using the Michaelis-Menten model and linear regression.

Method: This type of research is experimental. Samples were taken using the grab sample technique and taken at 4 points with a total of 70 liters divided equally at each point. Model determination was carried out using the Michaelis-Menten equation and linear regression. The reactor was made of fiberglass, measuring 40 cm long, 40 cm wide, 50 cm high, and 4 mm thick. The reactor has a capacity of 80 L. The wastewater inlet and outlet were designed using PVC pipes. The experiment was run for 30 days. The total surface area of all media was 14,130 cm2. Data analysis used linear regression tests and the Michaelis-Menten equation.

Results: The results of the Michaelis-Menten equation modeling showed an R2 value close to perfect, which indicated closeness to actual field conditions. Aerobic conditions lasted longer and allowed for degradation of BOD, COD, and TSS. Menten's constants for removing BOD, COD, and TSS were 17.7, 80.5, and 135, respectively. The R2 value obtained using the linear regression model approached the perfect number, namely for the parameters BOD (0.995), COD (0.9934), and TSS (0.9665). with y values of -0.0613, -0.0467, -0.042, respectively. The equation obtained from the results of the regression modeling is Y = 31.245-0.030X1 + 0.015X2 + 0.044X3 + e.

Conclusion: The model used is able to accurately predict the degradation of BOD, COD, and TSS under aerobic conditions. This study suggests optimizing aerobic conditions in wastewater treatment practices to improve the efficiency of BOD, COD, and TSS removal, using the Michaelis-Menten model for effective pollutant reduction. The size of the air bubbles produced by the aerator is not controlled so that the rate of air flow entering the reactor cannot be maximized, which may affect the results which could minimize the reactor's working time. This study enhances the knowledge of wastewater treatment by demonstrating the effectiveness of the Michaelis-Menten model in analyzing degradation rates and emphasizing the use of plastic media, thus offering valuable insights for future research.

Note: This article has supplementary file(s).

Fulltext View|Download |  CTA
Copyrigh Transfer Agreement
Subject
Type CTA
  Download (326KB)    Indexing metadata
 ES
Etichal Statement
Subject
Type ES
  Download (381KB)    Indexing metadata
 Turnitin
Turnitin
Subject
Type Turnitin
  Download (2MB)    Indexing metadata
Keywords: Kinetika Degradasi; Limbah Cair; Polutan; Reaktor; Aerobik

Article Metrics:

  1. Yesilay G, dos Santos OAL, A BR, et al. Impact of pathogenic bacterial communities present in wastewater on aquatic organisms: Application of nanomaterials for the removal of these pathogens. Aquatic Toxicology 2023;261(8):1–12; https://doi.org/10.1016/j.aquatox.2023.106620
  2. Kinnunen J, Rossi PM, Herrmann I, et al. Factors affecting effluent quality in on-site wastewater treatment systems in the cold climates of Finland and Sweden. J Clean Prod 2023;404(6):1–12; https://doi.org/10.1016/j.jclepro.2023.136756
  3. Benyathiar P, Kumar P, Carpenter G, et al. Polyethylene Terephthalate (PET) Bottle-to-Bottle Recycling for the Beverage Industry: A Review. Polymers (Basel) 2022;14(12):2366; https://doi.org/10.3390/polym14122366
  4. Muringayil Joseph T, Azat S, Ahmadi Z, et al. Polyethylene terephthalate (PET) recycling: A review. Case Studies in Chemical and Environmental Engineering 2024;9(6):1–16; https://doi.org/10.1016/j.cscee.2024.100673
  5. Paul D, Hall SG. Biochar and zeolite as alternative biofilter media for denitrification of aquaculture effluents. Water (Switzerland) 2021;13(19):1–13; https://doi.org/10.3390/w13192703
  6. Dorji U, Dorji P, Shon H, et al. On-site domestic wastewater treatment system using shredded waste plastic bottles as biofilter media: Pilot-scale study on effluent standards in Bhutan. Chemosphere 2022;286(P2):131729; https://doi.org/10.1016/j.chemosphere.2021.131729
  7. Kan M, Wang C, Zhu B, et al. Seven decades of plastic flows and stocks in the United States and pathways toward zero plastic pollution by 2050. J Ind Ecol 2023;27(6):1538–1552; https://doi.org/10.1111/jiec.13427
  8. Singh SP, Sharma MK, Sarangi SK, et al. Feasibility of sequential anaerobic-aerobic integrated settler-based biofilm reactor for onsite treatment of domestic wastewater. Environ Res Commun 2023;5(12):1–12; https://doi.org/10.1088/2515-7620/ad0e8e
  9. Donkadokula NY, Naz I, Kola AK, et al. Assessment of the aerobic glass beads fixed biofilm reactor (GBs-FBR) for the treatment of simulated methylene blue wastewater. Sci Rep 2020;10(1):1–14; https://doi.org/10.1038/s41598-020-77670-2
  10. Chattopadhyay I, J RB, Usman TMM, et al. Exploring the role of microbial biofilm for industrial effluents treatment. Bioengineered 2022;13(3):6420–6440; https://doi.org/10.1080/21655979.2022.2044250
  11. Waqas S, Harun NY, Sambudi NS, et al. Effect of Operating Parameters on the Performance of Integrated Fixed-Film Activated Sludge for Wastewater Treatment. Membranes (Basel) 2023;13(8):704; https://doi.org/10.3390/membranes13080704
  12. Boltz JP, Daigger GT. A mobile‐organic biofilm process for wastewater treatment. Water Environment Research 2022;94(9); https://doi.org/10.1002/wer.10792
  13. Wang X, Dong Y, Yu S, et al. Analysis of the Electricity Consumption in Municipal Wastewater Treatment Plants in Northeast China in Terms of Wastewater Characteristics. Int J Environ Res Public Health 2022;19(21):1–16; https://doi.org/10.3390/ijerph192114398
  14. Brose DA, Pluth TB, Grunwald P, et al. Assessment of statistical methods for converting biochemical oxygen demand and carbonaceous biochemical oxygen demand to total organic carbon in wastewater. Water and Environment Journal 2023;37(2):266–275; https://doi.org/10.1111/wej.12834
  15. Viljanen M, Tostrams L, Schoffelen N, et al. A joint model for the estimation of species distributions and environmental characteristics from point-referenced data. PLoS One 2024;19(6):1–27; https://doi.org/10.1371/journal.pone.0304942
  16. Yin Y, Sameoto JA, Keith DM, et al. Improving estimation of length–weight relationships using spatiotemporal models. Canadian Journal of Fisheries and Aquatic Sciences 2022;79(11):1896–1910; https://doi.org/10.1139/cjfas-2021-0317
  17. Liu J, Liang J, Bravo AG, et al. Anaerobic and aerobic biodegradation of soil-extracted dissolved organic matter from the water-level-fluctuation zone of the Three Gorges Reservoir region, China. Science of The Total Environment 2021;764:142857; https://doi.org/10.1016/j.scitotenv.2020.142857
  18. Gayathri. Role of Aerobic and Anaerobic Bacteria in the Bioconversion of Lignocellulose waste material. Journal of Microbes and Research 2023;2(1); https://doi.org/10.58489/2836-2187/008
  19. Harirchi S, Wainaina S, Sar T, et al. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review. Bioengineered 2022;13(3):6521–6557; https://doi.org/10.1080/21655979.2022.2035986
  20. Elyamine AM, Kan J, Meng S, et al. Aerobic and Anaerobic Bacterial and Fungal Degradation of Pyrene: Mechanism Pathway Including Biochemical Reaction and Catabolic Genes. Int J Mol Sci 2021;22(15):8202; https://doi.org/10.3390/ijms22158202
  21. Deng Z, Muñoz Sierra J, Ferreira ALM, et al. Effect of operational parameters on the performance of an anaerobic sequencing batch reactor (AnSBR) treating protein-rich wastewater. Environmental Science and Ecotechnology 2024;17:100296; https://doi.org/10.1016/j.ese.2023.100296
  22. Matturro B, Di Franca ML, Tonanzi B, et al. Enrichment of Aerobic and Anaerobic Hydrocarbon-Degrading Bacteria from Multicontaminated Marine Sediment in Mar Piccolo Site (Taranto, Italy). Microorganisms 2023;11(11):1–21; https://doi.org/10.3390/microorganisms11112782
  23. Schmautz Z, Espinal CA, Bohny AM, et al. Environmental parameters and microbial community profiles as indication towards microbial activities and diversity in aquaponic system compartments. BMC Microbiol 2021;21(1):1–11; https://doi.org/10.1186/s12866-020-02075-0
  24. Bucci P, Marin JCA, Zaritzky N, et al. Biological processes of nitrogen removal and modeling oxygen diffusion in flocculent sludge and in granular sequencing batch reactors. Journal of Chemical Technology & Biotechnology 2023;98(2):404–418; https://doi.org/10.1002/jctb.7253
  25. Schmautz Z, Espinal CA, Bohny AM, et al. Environmental parameters and microbial community profiles as indication towards microbial activities and diversity in aquaponic system compartments. BMC Microbiol 2021;21(1):12–19; https://doi.org/10.1186/s12866-020-02075-0
  26. Rahman M, Islam M, Doza S, et al. Higher helminth ova counts and incomplete decomposition in sand-enveloped latrine pits in a coastal sub-district of Bangladesh. PLoS Negl Trop Dis 2022;16(6):1–12; https://doi.org/10.1371/journal.pntd.0010495
  27. Kumari P, Kumar A. advanced oxidation process: A remediation technique for organic and non-biodegradable pollutant. Results in Surfaces and Interfaces 2023;11:100122; https://doi.org/10.1016/j.rsurfi.2023.100122
  28. Zalfiatri Y, Restuhadi F, Pramana A, et al. Development of microalgae and agrobost mutualism symbiotic technology in the aerobic treatment of sago refinery wastewater. IOP Conf Ser Earth Environ Sci 2023;1160(1):012074; https://doi.org/10.1088/1755-1315/1160/1/012074
  29. Gnowe WD, Noubissié E, Noumi GB. Influence of time and oxygenation on the degradation of organic matter, nitrogen and phosphates during the biological treatment of slaughterhouse effluent. Case Studies in Chemical and Environmental Engineering 2020;2:100048; https://doi.org/10.1016/j.cscee.2020.100048
  30. Ganthavee V, Trzcinski AP. Artificial intelligence and machine learning for the optimization of pharmaceutical wastewater treatment systems: a review. Environ Chem Lett 2024; https://doi.org/10.1007/s10311-024-01748-w
  31. Nishat A, Yusuf M, Qadir A, et al. Wastewater treatment: A short assessment on available techniques. Alexandria Engineering Journal 2023;76:505–516; https://doi.org/10.1016/j.aej.2023.06.054
  32. Al-Nuaim MA, Alwasiti AA, Shnain ZY. The photocatalytic process in the treatment of polluted water. Chemical Papers 2023;77(2):677–701; https://doi.org/10.1007/s11696-022-02468-7
  33. Obaideen K, Shehata N, Sayed ET, et al. The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus 2022;7:100112; https://doi.org/10.1016/j.nexus.2022.100112

Last update:

No citation recorded.

Last update: 2025-01-20 00:57:38

No citation recorded.