Department of Informatics, Universitas Diponegoro, Jl. Prof. Jacub Rais, Tembalang, Semarang, Indonesia 50275, Indonesia
BibTex Citation Data :
@article{JMASIF73130, author = {Etna Vianita and Henri Tantyoko}, title = {A Comparative Study of Machine Learning Models for Short-Term Load Forecasting}, journal = {Jurnal Masyarakat Informatika}, volume = {16}, number = {1}, year = {2025}, keywords = {Short-Term Load Forecasting, Machine Learning Models, Lag Features, Electricity Demand Prediction, Model Evaluation}, abstract = { Short-Term Load Forecasting (STLF) was a critical task in power system operations, enabling efficient energy management and planning. This study presented a comparative analysis of five machine learning models namely XGBoost, Random Forest, Multi-Layer Perceptron (MLP), Support Vector Regression (SVR), and LightGBM using real-world electricity demand data collected over a four-month period. Two modeling approaches were explored: one using only time-based features (hour, day of the week, month), and another incorporating historical lag features (lag_1, lag_2, lag_3) to capture temporal patterns. The results showed that MLP with lag features achieved the best performance (RMSE: 57.63, MAE: 34.54, MAPE: 0.22), highlighting its ability to model nonlinear and sequential dependencies. In contrast, SVR and LightGBM experienced performance degradation when lag features were added, suggesting sensitivity to feature dimensionality and data volume. These findings emphasized the importance of model-feature alignment and temporal context in improving forecasting accuracy. Future work could explore the integration of external variables such as weather and holidays, as well as the application of advanced deep learning architectures like LSTM or hybrid models to further enhance robustness and generalizability. }, issn = {2777-0648}, doi = {10.14710/jmasif.16.1.73130}, url = {https://ejournal.undip.ac.id/index.php/jmasif/article/view/73130} }
Refworks Citation Data :
Short-Term Load Forecasting (STLF) was a critical task in power system operations, enabling efficient energy management and planning. This study presented a comparative analysis of five machine learning models namely XGBoost, Random Forest, Multi-Layer Perceptron (MLP), Support Vector Regression (SVR), and LightGBM using real-world electricity demand data collected over a four-month period. Two modeling approaches were explored: one using only time-based features (hour, day of the week, month), and another incorporating historical lag features (lag_1, lag_2, lag_3) to capture temporal patterns. The results showed that MLP with lag features achieved the best performance (RMSE: 57.63, MAE: 34.54, MAPE: 0.22), highlighting its ability to model nonlinear and sequential dependencies. In contrast, SVR and LightGBM experienced performance degradation when lag features were added, suggesting sensitivity to feature dimensionality and data volume. These findings emphasized the importance of model-feature alignment and temporal context in improving forecasting accuracy. Future work could explore the integration of external variables such as weather and holidays, as well as the application of advanced deep learning architectures like LSTM or hybrid models to further enhance robustness and generalizability.
Article Metrics:
Last update:
Last update: 2025-05-30 05:48:27
The authors who submit the manuscript must understand that the article's copyright belongs to the author(s) if accepted for publication. However, the author(s) grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. Authors should also understand that their article (and any additional files, including data sets, and analysis/computation data) will become publicly available once published under that license. See our copyright policy. By submitting the manuscript to Jmasif, the author(s) agree with this policy. No special document approval is required.
The author(s) guarantee that:
The author(s) retain all rights to the published work, such as (but not limited to) the following rights:
Suppose the article was prepared jointly by more than one author. Each author submitting the manuscript warrants that all co-authors have given their permission to agree to copyright and license notices (agreements) on their behalf and notify co-authors of the terms of this policy. Jmasif will not be held responsible for anything arising because of the writer's internal dispute. Jmasif will only communicate with correspondence authors.
Authors should also understand that their articles (and any additional files, including data sets and analysis/computation data) will become publicly available once published. The license of published articles (and additional data) will be governed by a Creative Commons Attribution-ShareAlike 4.0 International License. Jmasif allows users to copy, distribute, display and perform work under license. Users need to attribute the author(s) and Jmasif to distribute works in journals and other publication media. Unless otherwise stated, the author(s) is a public entity as soon as the article is published.