skip to main content

Material Effectiveness Model for the Construction of Aluminum Hull

*Bagiyo Suwasono orcid scopus  -  Naval Architecture and Shipbuilding Engineering, Faculty of Engineering and Marine Science, Universitas Hang Tuah, Indonesia
Mochammad Rizky Darmawan  -  Naval Architecture and Shipbuilding Engineering, Faculty of Engineering and Marine Science, Universitas Hang Tuah, Indonesia
Intan Baroroh  -  Naval Architecture and Shipbuilding Engineering, Faculty of Engineering and Marine Science, Universitas Hang Tuah, Indonesia
Open Access Copyright (c) 2021 Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Construction of a hull generally requires several plates and profile material. Early indications for shipbuilding indicate that in manner, the linear function approach for installed material was 75% to 90%, and waste material was 10% to 25%. This study is conducting an assessment of the area of installed material and waste material on small vessels made of aluminum with variations in ship length and the method of approach trend lines both linear and nonlinear. Secondary data retrieval in the form of an aluminum cutting plan for plate material and profile from the AutoCAD application, which is then reprocessed through the FastCAM application to obtain results in the form of identification of installed material and waste material area. Based on variations in ship length and material area results, a scatter plot process was carried out through the Excel application to obtain results in the form of trend line functions with an R-squared determination coefficient of more than 0.9 and the results of the calculation of the intersection between the function of installed material and waste material, and the waste material function with the x-axis uses the balance method. The final result showed that the linear function gives an indication of the effectiveness of the material located in the range of 6 to 23 meters in length of the boat and polynomial function of order 2 in the range of 6 to 18 meters in length, while the waste material area in the two functions maximum 22%.

Fulltext View|Download

Article Metrics:

  1. Ecorys SCS Group, Study on the Competitiveness of the European Shipbuilding Industry, Final Report, Rotterdam: The Netherlands, 2009
  2. J.I. Jannah, M. Basuki, dan Soejitno, “Studi Perencanaan Standar Biaya Replating pada Pekerjaan Reparasi Kapal Menggunakan Variabel Costing Method di PT. Dok dan Perkapalan Surabaya (Persero),” Seminar Nasional Sains dan Teknologi VI, ITAT Surabaya, 2018
  3. B.A.G. Bossink, and H.J.H, Brouwers, “Construction Waste: Qualification and Source Evaluation,” Journal of Construction Engineering and Management, vol. 122, no. 1, pp. 55-60, 1996. doi: 10.1061/(ASCE)0733-9364(1996)122:1(55)
  4. E. Setiawan and A. Azhar, “Analisa Faktor-faktor yang Berpengaruh Terhadap Sisa Material Konstruksi Kapal”, Seminar Nasional: Peluang, Tantangan dan Prospek Transportasi Laut di Indonesia, ITAT Surabaya, 2007
  5. M. F. Kusuma, “Bahan Perhitungan Sisa Plat (Waste) Pada Pembangunan Block DB4 Kapal Kontainer 100 TEUS”, Tugas Akhir, Politeknik Perkapalan Negeri Surabaya, 2017
  6. A. N. Ramadhani, “Analisa Perbandingan Berat Waste pada Block Section 04 Kapal Cargo Ropax 300 apabila Proses Cutting dilakukan dengan Metode Manual dibanding dengan NC Berbasis Cutting”, Tugas Akhir, Politeknik Perkapalan Negeri Surabaya, 2018
  7. M. Leal and J.M. Gordo “Hull’s Manufacturing Cost Structure”, Brodogradnja/Shipbuilding, vol. 68, no. 3, pp. 1-24, 2017
  8. M. Hadjina, N. Fafandjel and T. Matulja, “Shipbuilding Production Process Design Methodology Using Computer Simulation”, Brodogradnja/Shipbuilding, vol. 66, no. 2, pp. 1-24, 2015
  9. S. Basic, “Developing Process Quality Measurement in Shipbuilding Industry”, Thesis, Faculty of Computing, Blekinge Institute of Technology, Karlskrona, Sweden, 2019
  10. N. R. Mandall, “Aluminum Welding”, Narosa Publishing House: Kharagpur India, 2005
  11. Javaneseboat, Kapal Fibre Buatan Indonesia, http://www.javaneseboat.com/, access Maret 2020
  12. Mike Yi, A Complete Guide to Scatter Plots, Chartio, 2019
  13. M. Friendly and D. Denis, “The Early Origins and Development of the Scatterplot“, Journal of the History of the Behavioral Sciences, vol. 41, no. 2, pp. 103–130, 2005. doi: 10.1002/jhbs.20078
  14. D. A. Keim, M. C. Hao, U. Dayal, H. Janetzko and P. Bak, “Generalized Scatter Plots”, Information Visualization, vol. 9, no. 4, pp. 301-311, 2010. doi: 10.1057/ivs.2009.34
  15. W. Selzer, “Overall Approach to Technical Analysis,” Wealth Skills: Understanding Investment Cycles, 2013
  16. M. David, How to Design Dashboard, Chartio, 2020
  17. H. Supomo dan I. Baihaqi, “Studi Pemodelan Harga Kapal Tanker Bekas dengan Metode Statistik”, Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan, vol. 16, no. 1, pp. 23-32, 2019. doi: 10.14710/kapal.v16i1.22442
  18. H. B. Sasono, “Analisa Pengaruh Ship’s Call, Inflasi, Tarif Bongkar Muat terhadap Muat G.C. Kapal Interinsuler di Tanjung Perak”, Ekuitas, vol. 12, no. 1, pp. 1-17, 2008. doi: 10.24034/j25485024.y2008.v12.i1.220
  19. J. W. Gooch, “Coefficient of Determination,” in Encyclopedic Dictionary of Polymers, 2011
  20. M. Pal and P. Bharati, “Introduction to Correlation and Linear Regressions Analysis”, Springer Nature Singapore Pte Ltd., 2019. doi: 10.1007/978-981-13-9314-3_1
  21. J. Frost, “Regression Analysis: An Intuitive Guide for Using and Interpreting Linear Models”, 1st edition, https://statisticsbyjim.com/regression/regression-analysis-intuitive-guide/, 2019

Last update:

No citation recorded.

Last update: 2024-06-20 16:27:13

No citation recorded.