skip to main content

Structural design analysis of sandwich panels under axial compression load: Utilization of geometry and material variations

Muhammad Daffa Alifianto  -  Universitas Sebelas Maret, Indonesia
Hamdani Maftuh Rohman  -  Universitas Sebelas Maret, Indonesia
Anandito Adam Pratama  -  Universitas Sebelas Maret, Indonesia
Iwan Istanto orcid  -  Universitas Sebelas Maret, Surakarta, Indonesia, Indonesia
*Aditya Rio Prabowo orcid  -  Universitas Sebelas Maret, Surakarta, Indonesia, Indonesia
Oleksiy Melnyk orcid  -  Odesa National Maritime University, Odesa, Ukraine, Ukraine
Quang Thang Do orcid  -  Nha Trang University, Nha Trang, Viet Nam, Viet Nam
Teguh Muttaqie orcid  -  National Research and Innovation Agency (BRIN), Surabaya, Indonesia, Indonesia
Eko Prasetya Budiana  -  Universitas Sebelas Maret, Surakarta, Indonesia, Indonesia
Jung Min Sohn orcid  -  Pukyong National University, South Korea
Received: 14 Jul 2025; Published: 14 Sep 2025.
Open Access Copyright (c) 2025 Kapal: Jurnal Ilmu Pengetahuan dan Teknologi Kelautan
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This study aims to analyze the performance of sandwich cylindrical shell structures under axial compression load by varying the geometry and types of material. Numerical simulations were conducted using ABAQUS software, employing the finite element method (FEM) to evaluate von Mises stress, displacement, and energy absorption. The materials used include ASTM 1045, ASTM A36, and Mild Steel, with geometry designs varying across five different configurations. The simulation results indicate that the combination of material and geometry has a significant impact on the structural response of the sandwich cylindrical shell. ASTM 1045 exhibited the highest von Mises stress and displacement, indicating both high strength and substantial deformation, while Mild Steel demonstrated better elastic properties. Geometry 4 combined with ASTM 1045 proved to be the strongest configuration, while the combination of Geometry 1 and Mild Steel was the most elastic. This study contributes to the development of more efficient and impact-resistant ship structural designs. 

Fulltext
Keywords: Sandwich Panel; Finite Element Method; Von Mises Stress; Displacement; Energy Absorption
Funding: Universitas Sebelas Maret / 371/UN27.22/PT.01.03/2025

Article Metrics:

  1. F. T. Hasanah, “Karakteristik wilayah daratan dan perairan di Indonesia,” J. Geogr., vol. XX, no. 13, pp. 1–6, Nov. 2020
  2. O. O. Husen, N. Abdullah, E. R. Farastuti, A. Rumondang, M. A. H. J, S. Gaffar, K. H. Rombe, D. Rosalina, D. Lesmana, Y. Wahyudin, T. Nisari, R. M. Rachman, N. Kartini, dan H. Irawan, POTENSI DAN PENGELOLAAN SUMBER DAYA KELAUTAN INDONESIA. Ternate, Maluku Utara: PT. KAMIYA JAYA AQUATIC, 2024
  3. M. Safarabadi, M. Haghighi-Yazdi, M. Sorkhi, and A. Yousefi, “Experimental and numerical study of buckling behavior of foam-filled honeycomb core sandwich panels considering viscoelastic effects,” J. Sandw. Struct. Mater., vol. 23, no. 11, pp. 3985–4015, Nov. 2021, doi: 10.1177/1099636220975168
  4. L. Tripathi and B. Behera, “Comparative analysis of aluminium core honeycomb with 3D woven Kevlar honeycomb composite,” Mater. Sci. Technol., vol. 39, no. 10, pp. 1697–1708, 2023, doi: 10.1080/02670836.2023.2180601
  5. K. V. Ramakrishnan and D. P. G. Kumar, "Applications of sandwich plate system for ship structures," IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), pp. 83-90, 2016
  6. H. Manjunatha et al., “Marine Corrosion,” Corrosion Science: Modern Trends and Applications, pp. 174–202, May 2020, doi: 10.2174/9789811481833121010014
  7. M. Chairi et al., “The effect of span length on the flexural properties of glass and basalt fiber reinforced sandwich structures with balsa wood core for sustainable shipbuilding,” Compos. Struct., vol. 343, p. 118187, Sep. 2024, doi: 10.1016/j.compstruct.2024.118187
  8. G. Di Bella and G. Palomba, “Cork/aluminium double-layer sandwich panels under impact loading for lightweight ship structures,” Int. J. Crashworthiness, vol. 28, no. 8, pp. 797–808, 2023, doi: 10.1080/13588265.2022.2130619
  9. J. Blanchard and A. Sobey, “Sustainable Sandwich Panels for Use in Ship Superstructures,” in Lecture Notes in Civil Engineering, Singapore: Springer, 2019, pp. 135–144. doi: 10.1007/978-981-15-4672-3_14
  10. Y. Garbatov, G. Palomba, and V. Crupi, “Risk-Based Hybrid Light-Weight Ship Structural Design Accounting for Carbon Footprint,” Appl. Sci., vol. 13, no. 6, p. 3583, Mar. 2023, doi: 10.3390/app13063583
  11. EMSA, "Annual Overview of Marine Casualties and Incidents 2017," European Maritime Safety Agency, Lisbon, Portugal, 2017
  12. A. D. Saputra, "Studi kecelakaan kapal di Indonesia dari tahun 2003-2019 berdasarkan data investigasi Komite Nasional Keselamatan Transportasi," Warta Penelitian Perhubungan, vol. 33, no. 2, pp. 87-94, 2021
  13. A. A. Pratama et al., “Hollow tube structures subjected to compressive loading: implementation of the pitting corrosion effect in nonlinear FE analysis,” J. Braz. Soc. Mech. Sci. Eng., vol. 45, no. 3, p. 154, Mar. 2023, doi: 10.1007/s40430-023-04067-3
  14. G. J. Shi, D. Y. Wang, B. Hu, and S. J. Cai, “Effect of initial geometric imperfections on dynamic ultimate strength of stiffened plate under axial compression for ship structures,” Ocean Eng., vol. 256, p. 111448, Jul. 2022, doi: 10.1016/j.oceaneng.2022.111448
  15. S. K. Tak and M. A. Iqbal, “Axial compression behaviour of thin-walled metallic tubes under quasi-static and dynamic loading,” Thin-Walled Struct., vol. 159, p. 107261, Feb. 2021, doi: 10.1016/J.TWS.2020.107261
  16. R. Yao, T. Pang, B. Zhang, J. Fang, Q. Li, and G. Sun, “On the crashworthiness of thin-walled multi-cell structures and materials: State of the art and prospects,” Thin-Walled Struct., vol. 186, p. 110734, May 2023, doi: 10.1016/j.tws.2023.110734
  17. G. R. Johnson and W. H. Cook, “Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures,” Eng. Fract. Mech., vol. 21, no. 1, pp. 31–48, 1985, doi: 10.1016/0013-7944(85)90052-9
  18. H. A. Al Kautsar et al., “Structural Analysis of Designed Tubes Under Axial Compression: Variations of Applied Temperature, Material Type, and Geometry Design,” Commun. - Sci. Lett. Univ. Žilina, vol. 26, no. 3, pp. B199–B215, 2024, doi: 10.26552/com.C.2024.0
  19. M. F. Dzulfiqar, A. R. Prabowo, R. Ridwan, and H. Nubli, “Assessment on the designed structural frame of the automatic thickness checking machine - Numerical validation in FE method,” Procedia Struct. Integr., vol. 35, pp. 59–66, 2021, doi: 10.1016/j.prostr.2021.10.009
  20. M. Dundar, K. Ercan, and O. Özenç, “Comparative assessment of element types for evaluating local elastic buckling behavior of rectangular hollow sections using finite element analysis,” Journal of Innovative Engineering and Natural Science, vol. 4, no. 2, pp. 1–13, Jun. 2024, doi: 10.61112/jiens.1555378

Last update:

No citation recorded.

Last update: 2025-09-14 09:12:04

No citation recorded.