skip to main content

Antibacterial Activity of Cinnamic Acid - Chitosan Encapsulation

Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia

Received: 29 Jan 2018; Published: 31 Jan 2018.
Open Access Copyright 2018 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0/.

Citation Format:
Abstract

The biggest cinnamon bark is cinnamic acid. The inhibitory activity of bacterial growth of S. aureus and E. coli and its abundance in nature becomes the superiority of cinnamic acid as antibacterial. However, the use of cinnamic acid as an antibacterial is still less than optimal because of low solubility in water. One of the latest technologies to address the problem is encapsulation in nanometer size. Encapsulation of cinnamic acid using chitosan nanoparticles as an encapsulation material was shown to increase the activity of cinnamic acid as antibacterial by protecting the active compound, as well as increasing its solubility in water through chitosan-TPP modification. Emulsion formation was performed using Corning LSE Compact at 6,000 rpm for 30 minutes. The formation of chitosan nanoparticles as encapsulation material was done using freeze dryer with freeze drying method. Chitosan was obtained from shrimp chitin with Deacetylation Degree (% DD) of 85.98%. The synthesis of chitosan nanoparticles yielded an average particle size of 330 nm with a percentage volume of 29.9% and 79.1% with an average size of 5570 nm. The morphological form of nanometer-sized chitosan was smaller and uniform than that of chitosan morphology. Encapsulation efficiency value of 67.304% makes cinnamic acid has higher activity inhibition of bacterial growth than pure cinnamic acid and chitosan nanoparticles. 

Fulltext View|Download
Keywords: Cinnamic acid; Encapsulation; Chitosan Nanopathic; Drying frozen; antibacterial

Article Metrics:

  1. Jeffry Julianus, Elvan Luckyvano, Sintesis Asam Sinamat Dari Benzaldehida Dan Asam Malonat Dengan Katalis Dietilamina, Journal of Pharmaceutical Sciences and Community, 11, 1, (2016)
  2. Marcellino Rudyanto, Lanny Hartanti, Synthesis of Some Cinnamic Acid Derivatives: Effect of Groups Attached on Aromatic Ring to the Reactivity of Benzaldehyde, Indonesian Journal of Chemistry, 8, 2, (2010) 226-230
  3. Sandrina A. Heleno, Isabel C. F. R. Ferreira, Ana P. Esteves, Ana Ćirić, Jasmina Glamočlija, Anabela Martins, Marina Soković, Maria João R. P. Queiroz, Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters, Food and Chemical Toxicology, 58, (2013) 95-100 http://dx.doi.org/10.1016/j.fct.2013.04.025
  4. John A Hoskins, The occurrence, metabolism and toxicity of cinnamic acid and related compounds, Journal of Applied Toxicology, 4, 6, (1984) 283-292
  5. Qingrong Huang, Hailong Yu, Qiaomei Ru, Bioavailability and delivery of nutraceuticals using nanotechnology, Journal of food science, 75, 1, (2010)
  6. A Sakha Rujita, Karakteristik Mikrokapsul Minyak Atsiri Lengkuas dengan Maltodekstrin Sebagai Enkapsulan [Characteristics of Galangal Essential Oil Microencapsulation Using Maltodextrin Encapsulant], Jurnal Teknologi dan Industri Pangan, 24, 2, (2013) 201
  7. Cleonice Gonçalves da Rosa, Caroline Dellinghausen Borges, Rui Carlos Zambiazi, Michael Ramos Nunes, Edilson Valmir Benvenutti, Suzane Rickes da Luz, Roseane Farias D’Avila, Josiane Kuhn Rutz, Microencapsulation of gallic acid in chitosan, β-cyclodextrin and xanthan, Industrial Crops and Products, 46, (2013) 138-146 http://dx.doi.org/10.1016/j.indcrop.2012.12.053
  8. Mike TL Tobing, Nor Basid Adibawa Prasetya, Khabibi Khabibi, Peningkatan Derajat Deasetilasi Kitosan dari Cangkang Rajungan dengan Variasi Konsentrasi NaOH dan Lama Perendaman, Jurnal Kimia Sains dan Aplikasi, 14, 3, (2011) 83-88
  9. R. Harris, E. Lecumberri, I. Mateos-Aparicio, M. Mengíbar, A. Heras, Chitosan nanoparticles and microspheres for the encapsulation of natural antioxidants extracted from Ilex paraguariensis, Carbohydrate Polymers, 84, 2, (2011) 803-806 http://dx.doi.org/10.1016/j.carbpol.2010.07.003
  10. Rejane C Goy, Douglas de Britto, Odilio BG Assis, A review of the antimicrobial activity of chitosan, Polímeros, 19, 3, (2009) 241-247
  11. S. Hassani, A. Laouini, H. Fessi, C. Charcosset, Preparation of chitosan–TPP nanoparticles using microengineered membranes – Effect of parameters and encapsulation of tacrine, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 482, (2015) 34-43 http://dx.doi.org/10.1016/j.colsurfa.2015.04.006
  12. Lok P. Singh, Sriman K. Bhattacharyya, Rahul Kumar, Geetika Mishra, Usha Sharma, Garima Singh, Saurabh Ahalawat, Sol-Gel processing of silica nanoparticles and their applications, Advances in Colloid and Interface Science, 214, (2014) 17-37 http://dx.doi.org/10.1016/j.cis.2014.10.007
  13. Emma Rochima, Karakterisasi kitin dan kitosan asal limbah rajungan cirebon jawa barat, Jurnal Pengolahan Hasil Perikanan Indonesia, 10, 1, (2010) http://dx.doi.org/10.17844/jphpi.v10i1.965
  14. Westriani Prambaningrum, Khabibi Khabibi, Muhammad Cholid Djunaidi, Adsorpsi Ion Besi (III) dan Kadmium (II) Menggunakan Gel Kitosan, Jurnal Kimia Sains dan Aplikasi, 12, 2, (2009) 47-51
  15. W. S. Wan Ngah, S. Fatinathan, Adsorption characterization of Pb(II) and Cu(II) ions onto chitosan-tripolyphosphate beads: Kinetic, equilibrium and thermodynamic studies, Journal of Environmental Management, 91, 4, (2010) 958-969 http://dx.doi.org/10.1016/j.jenvman.2009.12.003

Last update:

  1. Synthesis, characterization and antimicrobial study of cinnamic acid functionalized Ag nanoparticles

    Congcong Sun, Hongxin Zhi, Han Li, Jingchao Li, Kai Shao, Yamei Lin, Yujie Fu, Zhiguo Liu. Nanocomposites, 8 (1), 2022. doi: 10.1080/20550324.2022.2066827

Last update: 2024-03-28 23:02:07

No citation recorded.