skip to main content

Sintesis dan Karakterisasi CNT (Carbon Nanotube) Berdopan Logam Kobalt

1Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia

2Physics Department, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia

Published: 1 Dec 2014.
Open Access Copyright 2014 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract
Telah dilakukan penelitian sintesis dan karakterisasi CNT (Carbon Nanotube) dengan doping logam kobalt. Penelitian ini bertujuan untuk menentukan karakter CNT sebelum dan setelah didoping dengan variasi konsentrasi logam 10%, 20%, 30%, 40% dan 50%. Metode yang digunakan pada penelitian ini adalah impregnasi basah yang meliputi perendaman pada larutan logam dan kalsinasi. Hasil impregnasi dianalisis menggunakan Fourier Transform-Infra Red (FT-IR), GSA (Gas Sorption Analysis), Scanning Electron Microscopy (SEM) dan Energy Dispersive X-Ray Spectroscopy (EDS). Analisis FT-IR menunjukkan adanya vibrasi ulur dari ikatan Co-C dan Co-O.  Hasil GSA menunjukkan bahwa CNT loading 30% mempunyai luas permukaan tertinggi yaitu 69,192 m2/g. Hasil SEM-EDS menunjukkan bahwa morfologi permukaan dinding CNT ditutupi aggregat-aggregat kobalt. Pada hasil EDS fraksi kobalt dihasilkan adalah 1,96 % yang nilainya tidak jauh berbeda dari fraksi Fe yaitu 1,49%. Hal ini menunjukkan bahwa CNT doping logam Co menggunakan metode impregnasi basah tidak efektif.
Fulltext View|Download
Keywords: impregnasi; CNT; kobalt; kalsinasi

Article Metrics:

  1. Xiaobo Chen, Samuel S Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications, Chemical reviews, 107, 7, (2007) 2891-2959 http://dx.doi.org/10.1021/cr0500535
  2. Mariane Trépanier, Ajay K. Dalai, Nicolas Abatzoglou, Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: Role of nanoparticle size on reducibility, activity and selectivity in Fischer–Tropsch reactions, Applied Catalysis A: General, 374, 1, (2010) 79-86 http://dx.doi.org/10.1016/j.apcata.2009.11.029
  3. Weihong Xue, Hongping He, Jianxi Zhu, Peng Yuan, FTIR investigation of CTAB–Al–montmorillonite complexes, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67, 3, (2007) 1030-1036 http://dx.doi.org/10.1016/j.saa.2006.09.024
  4. Arthur Israel Vogel, G. Svehla, Textbook of Macro and Semimicro Qualitative Inorganic Analysis, Longman Scientific & Technical, 1987
  5. Kieran MacKenzie, Oscar Dunens, Andrew T. Harris, A review of carbon nanotube purification by microwave assisted acid digestion, Separation and Purification Technology, 66, 2, (2009) 209-222 http://dx.doi.org/10.1016/j.seppur.2009.01.017
  6. Zdenko Spitalsky, Dimitrios Tasis, Konstantinos Papagelis, Costas Galiotis, Carbon nanotube–polymer composites: Chemistry, processing, mechanical and electrical properties, Progress in Polymer Science, 35, 3, (2010) 357-401 http://dx.doi.org/10.1016/j.progpolymsci.2009.09.003
  7. Siva Yellampalli, Carbon Nanotubes: Synthesis, Characterization, Applications, InTech, Croatia, (2011)
  8. Aurélien Gasnier, M. Laura Pedano, Fabiana Gutierrez, Pierre Labbé, Gustavo A. Rivas, María D. Rubianes, Glassy carbon electrodes modified with a dispersion of multi-wall carbon nanotubes in dopamine-functionalized polyethylenimine: Characterization and analytical applications for nicotinamide adenine dinucleotide quantification, Electrochimica Acta, 71, (2012) 73-81 http://dx.doi.org/10.1016/j.electacta.2012.03.073
  9. Chien-Hung Chen, Chen-Chia Huang, Hydrogen storage by KOH-modified multi-walled carbon nanotubes, International Journal of Hydrogen Energy, 32, 2, (2007) 237-246 http://dx.doi.org/10.1016/j.ijhydene.2006.03.010
  10. Jing LÜ, Chengdu Huang, Suli Bai, Yunhui Jiang, Zhenhua Li, Thermal decomposition and cobalt species transformation of carbon nanotubes supported cobalt catalyst for Fischer-Tropsch synthesis, Journal of Natural Gas Chemistry, 21, 1, (2012) 37-42 http://dx.doi.org/10.1016/S1003-9953(11)60330-7
  11. Jean-Sébastien Girardon, Anatoly S. Lermontov, Léon Gengembre, Petr A. Chernavskii, Anne Griboval-Constant, Andrei Y. Khodakov, Effect of cobalt precursor and pretreatment conditions on the structure and catalytic performance of cobalt silica-supported Fischer–Tropsch catalysts, Journal of Catalysis, 230, 2, (2005) 339-352 http://dx.doi.org/10.1016/j.jcat.2004.12.014
  12. Wei Xue, Pengfei Li, Dielectrophoretic deposition and alignment of carbon nanotubes, in: Carbon Nanotubes-Synthesis, Characterization, Applications, InTech, 2011
  13. Hai Fu, Zhong-jie Du, Wei Zou, Hang-quan Li, Chen Zhang, Simple fabrication of strongly coupled cobalt ferrite/carbon nanotube composite based on deoxygenation for improving lithium storage, Carbon, 65, (2013) 112-123 http://dx.doi.org/10.1016/j.carbon.2013.08.006
  14. Arup Choudhury, Synthesis and characterization of poly(o-toluidine)/functionalized multi-walled carbon nanotubes nanocomposites with improved electrical conductivity, Materials Chemistry and Physics, 130, 1, (2011) 231-236 http://dx.doi.org/10.1016/j.matchemphys.2011.06.034
  15. Gonzalo Prieto, Agustín Martínez, Patricia Concepción, Ramón Moreno-Tost, Cobalt particle size effects in Fischer–Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts, Journal of Catalysis, 266, 1, (2009) 129-144 http://dx.doi.org/10.1016/j.jcat.2009.06.001
  16. Mariane Trépanier, Ahmad Tavasoli, Sanaz Anahid, Ajay K Dalai, Deactivation behavior of carbon nanotubes supported cobalt catalysts in Fischer-Tropsch synthesis, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 30, 1, (2011) 37-47

Last update:

No citation recorded.

Last update: 2024-11-20 02:32:32

No citation recorded.