skip to main content

Bioplastic from Pectin of Dragon Fruit (Hylocereus polyrhizus) Peel

Universitas Sanata Dharma, Indonesia

Received: 10 Mar 2020; Revised: 17 May 2020; Accepted: 31 May 2020; Available online: 25 Jun 2020; Published: 30 Jun 2020.
Open Access Copyright 2020 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Plastic derived from petroleum is challenging to degrade and pollute the environment. There are alternatives to making biodegradable plastics to reduce the adverse effects of plastics on the environment. This study aims to utilize dragon fruit peel waste as a material for making bioplastic. Plastic characterization was carried out by FTIR analysis to determine the functional groups contained in bioplastics. The results showed that dragon fruit peel could be extracted by HCl solution, and the pectin yield is 11%. Extracted pectin was used to make bioplastics with and without the addition of ethylene glycol. The results showed that moisture content of bioplastics of dragon fruit peel pectin is 5.71–12%, while dragon fruit peel pectin and ethylene glycol are 2.86–5.71%. FT-IR spectra showed that the bioplastics from dragon fruit peels belong to the pectin group, which produces carbonyl absorption at 1636–1628 cm-1 and stretching C-O stretch at 1098–1101 cm‑1.

Fulltext View|Download
Keywords: bioplastic; dragon fruit peel; pectin
Funding: Universitas Sanata Dharma

Article Metrics:

  1. Chien-Chung Chen, Ju-Yu Chueh, How Tseng, Haw-Ming Huang and Sheng-Yang Lee, Preparation and characterization of biodegradable PLA polymeric blends, Biomaterials, 24, 7, (2003), 1167-1173 https://doi.org/10.1016/S0142-9612(02)00466-0
  2. José A. Heredia-Guerrero, José J. Benítez, Pietro Cataldi, Uttam C. Paul, Marco Contardi, Roberto Cingolani, Ilker S. Bayer, Antonio Heredia and Athanassia Athanassiou, All-Natural Sustainable Packaging Materials Inspired by Plant Cuticles, Advanced Sustainable Systems, 1, 1-2, (2017), 1600024 https://doi.org/10.1002/adsu.201600024
  3. A. K. Mohanty, M. Misra and G. Hinrichsen, Biofibres, biodegradable polymers and biocomposites: An overview, Macromolecular Materials and Engineering, 276, (2000), 1-24 https://doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W
  4. afat Siddique, Jamal Khatib and Inderpreet Kaur, Use of recycled plastic in concrete: a review, Waste Management, 28, 10, (2008), 1835-1852 https://doi.org/10.1016/j.wasman.2007.09.011
  5. Cecilia Cecchini, Bioplastics made from upcycled food waste. Prospects for their use in the field of design, The Design Journal, 20, sup1, (2017), S1596-S1610 https://doi.org/10.1080/14606925.2017.1352684
  6. Maja Rujnić-Sokele and Ana Pilipović, Challenges and opportunities of biodegradable plastics: A mini review, Waste Management & Research, 35, 2, (2017), 132-140 https://doi.org/10.1177/0734242X16683272
  7. Korawit Chaisu, Bioplastic Industry from Agricultural Waste in Thailand, Journal of Advanced Agricultural Technologies, 3, 4, (2016), 310-313 https://doi.org/10.18178/joaat.3.4.310-313
  8. Tanja Narancic, Steven Verstichel, Srinivasa Reddy Chaganti, Laura Morales-Gamez, Shane T. Kenny, Bruno De Wilde, Ramesh Babu Padamati and Kevin E. O'Connor, Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution, Environmental Science & Technology, 52, 18, (2018), 10441-10452 https://doi.org/10.1021/acs.est.8b02963
  9. Dion Bisara, Indonesia Second Largest Food Waster in: Jakarta Globe, Jakarta Globe, Jakarta, 2017,
  10. Yiu Fai Tsang, Vanish Kumar, Pallabi Samadar, Yi Yang, Jechan Lee, Yong Sik Ok, Hocheol Song, Ki-Hyun Kim, Eilhann E. Kwon and Young Jae Jeon, Production of bioplastic through food waste valorization, Environment International, 127, (2019), 625-644 https://doi.org/10.1016/j.envint.2019.03.076
  11. Veronika Bátori, Mostafa Jabbari, Dan Åkesson, Patrik R. Lennartsson, Mohammad J. Taherzadeh and Akram Zamani, Production of Pectin-Cellulose Biofilms: A New Approach for Citrus Waste Recycling, International Journal of Polymer Science, 2017, Article ID 9732329, (2017), 1-9 https://doi.org/10.1155/2017/9732329
  12. Veronika Batori, Magnus Lundin, Dan Akesson, Patrik R. Lennartsson, Mohammad J. Taherzadeh and Akram Zamani, The Effect of Glycerol, Sugar, and Maleic Anhydride on Pectin-Cellulose Thin Films Prepared from Orange Waste, Polymers, 11, 3, (2019), 392 https://doi.org/10.3390/polym11030392
  13. Jesper Gustafsson, Mikael Landberg, Veronika Bátori, Dan Akesson, Mohammad J. Taherzadeh and Akram Zamani, Development of Bio-Based Films and 3D Objects from Apple Pomace, Polymers, 11, 2, (2019), 289 https://doi.org/10.3390/polym11020289
  14. Dayang Norulfairuz Abang Zaidel, Nurul Aqilah Makhtar, Yanti Maslina Mohd. Jusoh and Ida Idayu Muhamad, Efficiency and thermal stability of encapsulated anthocyanins from red dragon fruit (Hylocereus Polyrhizus) using microwave-assisted technique, Chemical Engineering Transactions, 43, (2015), 127-132 https://doi.org/10.3303/CET1543022
  15. Dayang Norulfairuz Abang Zaidel, Jamaeyah Md. Rashid, Nurul Hazirah Hamidon, Liza Md. Salleh and Angzzas Sari Mohd. Kassim, Extraction and Characterisation of Pectin from Dragon Fruit (Hylocereus Polyrhizus) Peels, Chemical Engineering Transactions, 56, (2017), 805-810 https://doi.org/10.3303/CET1756135
  16. Erza Bestari Pranutik Agne, Rum Hastuti and Khabibi, Ekstraksi dan Uji Kestabilan Zat Warna Betasianin dari Kulit Buah Naga (Hylocereus polyrhizus) serta Aplikasinya sebagai Pewarna Alami Pangan, Jurnal Kimia Sains dan Aplikasi 13, 2, (2010), 51-56 https://doi.org/10.14710/jksa.13.2.51-56
  17. Yelfira Sari, Adlis Santoni and Elisabet Elisabet, Comparative Test of Color Stability between Betalain Pigments of Red Dragon Fruits and Anthocyanin Pigments from Tamarillo Fruit at Various pH, Jurnal Kimia Sains dan Aplikasi, 21, 3, (2018), 107-112 https://doi.org/10.14710/jksa.21.3.107-112
  18. Bantolo, Berkah Petani Buah Naga Banyuwangi di Tengah Pandemi Covid 19, in: Agrofarm Informasi Agribisnis, Agrofarm.co.id, Jakarta, 2020,
  19. Arantzazu Valdés, Nuria Burgos, Alfonso Jiménez and María Garrigós, Natural Pectin Polysaccharides as Edible Coatings, Coatings, 5, 4, (2015), 865-886 https://doi.org/10.3390/coatings5040865
  20. M. Ragab, M. F. Osman, M. E. Khalil and M. S. Gouda, Banana (Musa sp.) peels as a source of pectin and some food nutrients, Journal of Sustainable Agricultural Sciences, 42, 4, (2016), 88-102 https://dx.doi.org/10.21608/jsas.2016.3028
  21. B. Jamilah, C. E. Shu, M. Kharidah, M. A. Dzulkifly and A. Noranizan, Physico-chemical Characteristic of Red Pitaya (Hylocereus polyrhizus) peel, International Food Research Journal 18, (2011), 278-286
  22. Megawati and Adientya Yaniz Ulinuha, Ekstraksi Pektin Kulit Buah Naga (Dragon Fruit) dan Aplikasinya Sebagai Edible Film, Jurnal Bahan Alam Terbarukan, 4, 1, (2015), 16-23
  23. Narazelina Sah Mohd. Ismail, Nazaruddin Ramli, Norziah Mohd. Hani and Zainudin Meon, Extraction and Characterization of Pectin from Dragon Fruit (Hylocereus polyrhizus) using Various Extraction Conditions, Sains Malaysiana 41, 1, (2012), 41-45
  24. Shahrooz Rahmati, Aminah Abdullah and Oon Lee Kang, Effects of different microwave intensity on the extraction yield and physicochemical properties of pectin from dragon fruit (Hylocereus polyrhizus) peels, Bioactive Carbohydrates and Dietary Fibre, 18, (2019), 100186 https://doi.org/10.1016/j.bcdf.2019.100186
  25. Cristina Mellinas, Marina Ramos, Alfonso Jimenez and María Carmen Garrigós, Recent Trends in the Use of Pectin from Agro-Waste Residues as a Natural-Based Biopolymer for Food Packaging Applications, Materials, 13, 3, (2020), 673 https://doi.org/10.3390/ma13030673
  26. P. H. Yu, H. Chua, A. L. Huang, W. Lo and G. Q. Chen, Conversion of Food Industrial Wastes into Bioplastics, Applied Biochemistry and Biotechnology, 70, (1998), 603–614 https://doi.org/10.1007/BF02920172
  27. Colin D. May, Industrial Pectins: Sources, Production and Applications, Carbohydrate Polymers, 12, 1, (1990), 79-99 https://doi.org/10.1016/0144-8617(90)90105-2
  28. Abubakar Tuhuloula, Lestari Budiyarti and Etha Nur Fitriana, Karakterisasi Pektin Dengan Memanfaatkan Limbah Kulit Pisang Menggunakan Metode Ekstraksi, Konversi, 2, 1, (2013), 21-27 http://dx.doi.org/10.20527/k.v2i1.123
  29. Nurhayati Nurhayati, Maryanto Maryanto and Rika Tafrikhah, Ekstraksi Pektin dari Kulit dan Tandan Pisang dengan Variasi Suhu dan Metode (Pectin Extraction from Banana Peels and Bunch with Various Temperatures and Methods), agriTECH, 36, 3, (2016), 327 https://doi.org/10.22146/agritech.16605
  30. Giovanni Perotto, Luca Ceseracciu, Roberto Simonutti, Uttam C. Paul, Susana Guzman-Puyol, Thi-Nga Tran, Ilker S. Bayer and Athanassia Athanassiou, Bioplastics from vegetable waste via an eco-friendly water-based process, Green Chemistry, 20, 4, (2018), 894-902 https://doi.org/10.1039/C7GC03368K
  31. Phaviphu Khamsucharit, Kamlai Laohaphatanalert, Paiboolya Gavinlertvatana, Klanarong Sriroth and Kunruedee Sangseethong, Characterization of pectin extracted from banana peels of different varieties, Food Science and Biotechnology, 27, 3, (2018), 623-629 https://doi.org/10.1007/s10068-017-0302-0
  32. Melissa B. Agustin, Bashir Ahmmad, Shanna Marie M. Alonzo and Famille M. Patriana, Bioplastic based on starch and cellulose nanocrystals from rice straw, Journal of Reinforced Plastics and Composites, 33, 24, (2014), 2205-2213 https://doi.org/10.1177%2F0731684414558325
  33. Suman Gujar, Bartik Pandel and A. S. Jethoo, Effect of Plasticizer on Mechanical and Moisture Absorption Properties of Eco-friendly Corn Starch-based Bioplastic, Nature Environment and Pollution Technology, 13, 2, (2014), 425 - 428
  34. M. I. J. Ibrahim, S. M. Sapuan, E. S. Zainudin and M. Y. M. Zuhri, Physical, thermal, morphological, and tensile properties of cornstarch-based films as affected by different plasticizers, International Journal of Food Properties, 22, 1, (2019), 925-941 https://doi.org/10.1080/10942912.2019.1618324
  35. M. H. S. Ginting, R. Hasibuan, M. Lubis, F. Alanjani, F. A. Winoto and R. C. Siregar, Utilization of Avocado Seeds as Bioplastic Films Filler Chitosan and Ethylene Glycol Plasticizer, Asian Journal of Chemistry, 30, 7, (2018), 1569-1573 https://doi.org/10.14233/ajchem.2018.21254
  36. Alexander Jones, Mark Ashton Zeller and Suraj Sharma, Thermal, mechanical, and moisture absorption properties of egg white protein bioplastics with natural rubber and glycerol, Progress in Biomaterials, 2, 12, (2013), 1-13 https://doi.org/10.1186/2194-0517-2-12
  37. Aya Sofia, Agung Tri Prasetya and Ella Kusumastuti, Komparasi Bioplastik Kulit Labu Kuning-Kitosan dengan Plasticizer dari Berbagai Variasi Sumber Gliserol, Indonesian Journal of Chemical Science, 6, 2, (2017), 110-116
  38. Meilina Rahayu Utami, Latifah and Nuni Widiarti, Sintesis Plastik Biodegradable dari Kulit Pisang dengan Penambahan Kitosan dan Plasticizer Gliserol, Indonesian Journal of Chemical Science, 3, 2, (2014), 163-167
  39. Yuana Elly Agustin and Karsono Samuel Padmawijaya, Sintesis Bioplastik dari Kitosan-Pati Kulit Pisang Kepok dengan Penambahan Zat Adiktif, Jurnal Teknik Kimia, 10, 2, (2016), 40-48
  40. Eldo Sularto Marbun, Sintesis Bioplastik dari Pati Ubi Jalar Menggunakan Penguat Logam ZnO dan Penguat Alami Selulosa, undergraduate thesis, Program Studi Teknik Kimia, Universitas Indonesia

Last update:

  1. Characterization of Potential Cellulose from Hylocereus Polyrhizus (Dragon Fruit) peel: A Study on Physicochemical and Thermal Properties

    Nurul Hanan Taharuddin, Ridhwan Jumaidin, Muhd Ridzuan Mansor, Fahmi Asyadi Md Yusof, Roziela Hanim Alamjuri. Journal of Renewable Materials, 11 (1), 2023. doi: 10.32604/jrm.2022.021528
  2. Physical, Mechanical Barrier, Antibacterial Properties, and Functional Group of Carrageenan-Based Edible Film as Influenced by Pectin from Dillenia Serrata Fruit Peel and Curcumin

    Reza Arianto Sultan, Andi Nur Faidah Rahman, Andi Dirpan, Adiansyah Syarifuddin. Current Research in Nutrition and Food Science Journal, 11 (3), 2023. doi: 10.12944/CRNFSJ.11.3.32
  3. From trash to treasure: review on upcycling of fruit and vegetable wastes into starch based bioplastics

    Subhankar Das, Manjula Ishwara Kalyani. Preparative Biochemistry & Biotechnology, 53 (7), 2023. doi: 10.1080/10826068.2022.2158470
  4. Turning agricultural waste streams into biodegradable plastic: A step forward into adopting sustainable carbon neutrality

    Sevakumaran Vigneswari, Seng Hon Kee, Mohamad Hazari Hazwan, Keisheni Ganeson, Kavin Tamilselvan, Kesaven Bhubalan, Al-Ashraf Amirul, Seeram Ramakrishna. Journal of Environmental Chemical Engineering, 12 (2), 2024. doi: 10.1016/j.jece.2024.112135
  5. Biodegradable films from dragon fruit (Hylocereus polyrhizus) peel pectin and potato starches crosslinked with glutaraldehyde

    Nguyen Ngoc Thanh Tien, Hiep Thi Nguyen, Ngoc Lieu Le, Tran Tien Khoi, Aurore Richel. Food Packaging and Shelf Life, 37 , 2023. doi: 10.1016/j.fpsl.2023.101084
  6. Produce starch-based bioplastic from different renewable biomass sources

    Christou Vasiliki, Karataraki Fedra Zoi , Eid Omar , Eid Rasha , Moutiris Joseph A . Annals of Clinical Hypertension, 6 (1), 2022. doi: 10.29328/journal.ach.1001032
  7. Valorization of dragon fruit waste to value-added bioproducts and formulations: A review

    Manikant Tripathi, Deepti Diwan, Amritesh Chandra Shukla, James Gaffey, Neelam Pathak, Kavya Dashora, Ashok Pandey, Minaxi Sharma, Sanjay Guleria, Sunita Varjani, Quang D. Nguyen, Vijai K. Gupta. Critical Reviews in Biotechnology, 2023. doi: 10.1080/07388551.2023.2254930

Last update: 2024-04-24 17:28:34

No citation recorded.