skip to main content

Prediction of Pharmacokinetics Parameter and Molecular Docking Study of Antidiabetic Compounds from Syzygium polyanthum and Syzygium cumini

Faculty of Pharmacy, Setia Budi University, Indonesia

Received: 8 Dec 2019; Revised: 21 May 2020; Accepted: 31 May 2020; Published: 30 Jun 2020.
Open Access Copyright 2020 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Syzygium polyanthum leaf extract and Syzygium cumini herbs extract have been reported to have antidiabetic activity. This study aimed to predict the molecular target of chemical constituents of S. polyanthum and S. cumini as well as study their interactions with various macromolecular targets of an antidiabetic agent. Molecular docking of all ligands was studied using the Autodock Vina program in PyRx, and the results are presented as binding affinity values (kcal/mol) of ligand against the protein. PyMOL is used to visualize the 3D molecular of docked conformation and ligand-protein interactions. The predicted pharmacokinetic parameters were obtained by SwissADME. Delphinidin-3-gentiobioside and isoquercitrin are predicted to have good interaction with DPP-4 and α-glucosidase, respectively. However, they are predicted to have poor absorption properties. Quercetin and kaempferol are predicted to have good interaction with PTP1B and glucokinase and showed good pharmacokinetic properties.

Note: This article has supplementary file(s).

Fulltext View|Download | HTML |  common.other
Prediction of Pharmacokinetics Parameter and Molecular Docking Study of Antidiabetic Compounds from Syzygium polyanthum and Syzygium cumin
Subject
Type Other
  Download (809KB)    Indexing metadata
 common.other
Prediction of Pharmacokinetics Parameter and Molecular Docking Study of Antidiabetic Compounds from Syzygium polyanthum and Syzygium cumin
Subject
Type Other
  View (187KB)    Indexing metadata
Keywords: molecular docking; Syzygium polyanthum; Syzygium cumini; antidiabetic; AutoDock Vina; SwissADME
Funding: Kementerian Riset Teknologi Dan Pendidikan Tinggi Republik Indonesia

Article Metrics:

  1. American Diabetes Association, Diagnosis and classification of diabetes mellitus, Diabetes care, 33, Supplement 1, (2010), S62-S69 https://doi.org/10.2337/dc10-S062
  2. American Diabetes Association, 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2018, Diabetes care, 41, Supplement 1, (2018), S13-S27 https://doi.org/10.2337/dc18-S002
  3. Adel S. Al-Zubairi and Eltayeb Elamin M. Eid, Molecular targets in the development of antidiabetic drugs, International Journal of Pharmacology, 6, 6, (2010), 784-795 http://dx.doi.org/10.3923/ijp.2010.784.795
  4. Prasad Patil, Surajit Mandal, Sudhir Kumar Tomar and Santosh Anand, Food protein-derived bioactive peptides in management of type 2 diabetes, European Journal of Nutrition, 54, 6, (2015), 863-880 https://doi.org/10.1007/s00394-015-0974-2
  5. Ekayanti Meiliza, Sauriasari Rani and Elya Berna, Dipeptidyl peptidase IV Inhibitory Activity of Fraction from White Tea Ethanolic Extract (Camellia sinensis (L.) Kuntze) ex vivo, Pharmacognosy Journal, 10, 1, (2018), 190-193 http://dx.doi.org/10.5530/pj.2018.1.32
  6. Jia Sun, Chao Qu, Yajun Wang, Hui Huang, Mingrui Zhang, Hongyan Li, Yejun Zhang, Yang Wang and Wei Zou, PTP1B, A Potential Target of Type 2 Diabetes Mellitus, Molecular Biology, 05, 4, (2016), 1000174 http://dx.doi.org/10.4172/2168-9547.1000174
  7. Raden Arthur Ario Lelono and Sanro Tachibana, Preliminary Studies of Indonesian Eugenia polyantha Leaf extracts as inhibitors of key enzymes for type 2 diabetes, Journal of Medical Sciences, 13, 2, (2013), 103-110 http://dx.doi.org/10.3923/jms.2013.103.110
  8. Erlena Rahim, Azlini Ismail, Muhammad Omar, Umi Rahmat and Wan Amir Nizam Wan Ahmad, GC-MS Analysis of Phytochemical Compounds in Syzygium polyanthum Leaves Extracted using Ultrasound-Assisted Method, Pharmacognosy Journal, 10, (2017), 110-119 http://dx.doi.org/10.5530/pj.2018.1.20
  9. Rahul Gupta and AM Saxena, Hypoglycemic and anti-hyperglycemic activities of Syzygium cumini (Linn.) skeels whole fruit, in normal and streptozotocin-induced diabetic rats, Asian Journal of Pharmaceutical and Biological Research, 1, 3, (2011), 267-272
  10. S Ramya, K Neethirajan and R Jayakumararaj, Profile of bioactive compounds in Syzygium cumini–a review, Journal of Pharmacy Research, 5, 8, (2012), 4548-4553
  11. Bibi Shabana and Sakata Katsumi, Current Status of Computer-Aided Drug Design for Type 2 Diabetes, Current Computer-Aided Drug Design, 12, 2, (2016), 167-177 http://dx.doi.org/10.2174/1573409912666160426120709
  12. Neema Bisht and B. K. Singh, Role of computer aided drug design in drug development and drug discovery, International Journal of Pharmaceutical Sciences and Research, 9, 4, (2018), 1405-1415 http://doi.org/10.13040/IJPSR.0975-8232.9(4).1405-15
  13. Antoine Daina, Olivier Michielin and Vincent Zoete, SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules, Scientific Reports, 7, 1, (2017), 42717 https://doi.org/10.1038/srep42717
  14. Sargis Dallakyan and Arthur J. Olson, Small-Molecule Library Screening by Docking with PyRx, in: J.E. Hempel, C.H. Williams, C.C. Hong (Eds.) Chemical Biology: Methods and Protocols, Springer New York, New York, NY, 2015, pp. 243-250 https://doi.org/10.1007/978-1-4939-2269-7_19
  15. Alessandro Pedretti, Luigi Villa and Giulio Vistoli, VEGA: a versatile program to convert, handle and visualize molecular structure on Windows-based PCs, Journal of Molecular Graphics and Modelling, 21, 1, (2002), 47-49 https://doi.org/10.1016/S1093-3263(02)00123-7
  16. Dassault Systèmes BIOVIA, Discovery Studio Modeling Environment, Release 2017, Dassault Systèmes, San Diego, 2016
  17. Oleg Trott and Arthur J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, Journal of Computational Chemistry, 31, 2, (2010), 455-461 https://doi.org/10.1002/jcc.21334
  18. Daniel Seeliger and Bert L. de Groot, Ligand docking and binding site analysis with PyMOL and Autodock/Vina, Journal of Computer-Aided Molecular Design, 24, 5, (2010), 417-422 https://doi.org/10.1007/s10822-010-9352-6
  19. Maria Kontoyianni, Laura M. McClellan and Glenn S. Sokol, Evaluation of Docking Performance: Comparative Data on Docking Algorithms, Journal of Medicinal Chemistry, 47, 3, (2004), 558-565 https://doi.org/10.1021/jm0302997
  20. Xuan-Yu Meng, Hong-Xing Zhang, Mihaly Mezei and Meng Cui, Molecular docking: a powerful approach for structure-based drug discovery, Current computer-aided drug design, 7, 2, (2011), 146-157 https://doi.org/10.2174/157340911795677602
  21. Puminan Punthasee, Adrian R. Laciak, Andrea H. Cummings, Kasi Viswanatharaju Ruddraraju, Sarah M. Lewis, Roman Hillebrand, Harkewal Singh, John J. Tanner and Kent S. Gates, Covalent Allosteric Inactivation of Protein Tyrosine Phosphatase 1B (PTP1B) by an Inhibitor–Electrophile Conjugate, Biochemistry, 56, 14, (2017), 2051-2060 https://doi.org/10.1021/acs.biochem.7b00151
  22. Carina Proença, Marisa Freitas, Daniela Ribeiro, Joana LC Sousa, Félix Carvalho, Artur MS Silva, Pedro A Fernandes and Eduarda Fernandes, Inhibition of protein tyrosine phosphatase 1B by flavonoids: a structure-activity relationship study, Food and Chemical Toxicology, 111, (2018), 474-481 https://doi.org/10.1016/j.fct.2017.11.039
  23. Ronald J. Hinklin, Thomas D. Aicher, Deborah A. Anderson, Brian R. Baer, Steven A. Boyd, Kevin R. Condroski, Walter E. DeWolf, Christopher F. Kraser, Maralee McVean, Susan P. Rhodes, Hillary L. Sturgis, Walter C. Voegtli, Lance Williams and Jonathan B. Houze, Discovery of 2-Pyridylureas as Glucokinase Activators, Journal of Medicinal Chemistry, 57, 19, (2014), 8180-8186 https://doi.org/10.1021/jm501204z
  24. Véronique Roig-Zamboni, Beatrice Cobucci-Ponzano, Roberta Iacono, Maria Carmina Ferrara, Stanley Germany, Yves Bourne, Giancarlo Parenti, Marco Moracci and Gerlind Sulzenbacher, Structure of human lysosomal acid α-glucosidase–a guide for the treatment of Pompe disease, Nature Communications, 8, 1, (2017), 1111 https://doi.org/10.1038/s41467-017-01263-3
  25. Yan Qin Li, Feng Chao Zhou, Fei Gao, Jun Sheng Bian and Fang Shan, Comparative Evaluation of Quercetin, Isoquercetin and Rutin as Inhibitors of α-Glucosidase, Journal of Agricultural and Food Chemistry, 57, 24, (2009), 11463-11468 https://doi.org/10.1021/jf903083h

Last update:

  1. Metabolite profile, antiproliferative, and antioxidant activity of Acacia auriculiformis and Acacia crassicarpa extracts

    Yanico Hadi Prayogo, Irmanida Batubara, Setyanto Tri Wahyudi, Rita Kartika Sari, Wasrin Syafii. Journal of Saudi Chemical Society, 27 (6), 2023. doi: 10.1016/j.jscs.2023.101742
  2. Molecular docking analysis of seagrass (Enhalus acoroides) phytochemical compounds as an antidiabetic

    Yayuk Fatmawati, Sophi Sandrina, Richca Nur Aina, Erlia Narulita. Journal of Biological Research - Bollettino della Società Italiana di Biologia Sperimentale, 95 (1), 2022. doi: 10.4081/jbr.2022.10224
  3. An Insight of Co-Encapsulation Nigella sativa and Cosmos caudatus Kunth Extracts as Anti-Inflammatory Agent Through In Silico Study

    Nadiyah Zuhroh, Zubaidah Ningsih, Anna Safitri. Jurnal Kimia Sains dan Aplikasi, 24 (5), 2021. doi: 10.14710/jksa.24.5.152-160

Last update: 2024-04-22 06:36:17

No citation recorded.