Sel Elektrolisis 3–Kompartemen untuk Ekstraksi Magnesium dan Sulfat dari Sistem Larutan MgSO4–KCl–H2O

*Wasino Hadi Rahmanto scopus  -  Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia
Mukhammad Asy’ari orcid scopus  -  Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia
Rame Rame  -  Laboratorium Riset, Balai Riset & Standariasi Industri dan Perdaga, Indonesia
Marihati Marihati  -  Laboratorium Riset, Balai Riset & Standariasi Industri dan Perdaga, Indonesia
Published: 1 Apr 2006.
Open Access Copyright 2006 Jurnal Kimia Sains dan Aplikasi
License URL: http://creativecommons.org/licenses/by-sa/4.0/

Citation Format:
Abstract
Extraction of magnesium and sulfate from MgSO4–KCl–H2O solution system of 0.1 M salt concentration has been conducted. The 3–compartment electrolytic cell model was designed to fulfill the purpose. The cell is constructed from aquarium plastic box of 417 mL capacity divided into three compartments. Each compartment is separated by fixed plastic wall. One of the compartment with no electrode (mid compartment) was connected either to anodic (left) and cathodic (right) compartment using double filter paper strip of 2 x 6 (in cm) dimension. Electrolysis was performed in atmospheric environment under the 6 volt external electric potential using 7A Montana power supply. Experimental results show that electrolysis systems provide good separation of magnesium and sulfate from solution. Magnesium in the form of Mg(OH)2 and sulfate as H2SO4 has been obtained in about 92 % yield. Clear solution in the mid compartment show the absence of salt residues; both of cationic and anionic species migrate totally toward cathodic and anodic compartment respectively.
Keywords: Sel Elektrolisis; 3–Kompartemen; magnesium; sistem larutan MgSO4–KCl–H2O

Article Metrics:

  1. Anoname, 2004, Magnesium Production, EPS Report 9/AP/6, Environment Canada, Ottawa
  2. Anoname, 2005, The Economics of Magnesium Compounds, Roskill Information Services Ltd
  3. Benham AJ and Taylor LE, 2005, Frican Mineral Production 1999 – 2003, Geological Survey Report No. IR/05/074, British Geological Survey, Keyworth
  4. Bonney OV, 1982, Recovery of Magnesium as Magnesium Hydroxide from Sea Water, United State Patent 4314985
  5. Bodner GM and Pardue HL, 1989, Chemistry: An Experimental Science, New York: John Wiley & Sons, pp.A10–11
  6. Burg BV., 2003, Extremophiles as a source for novel enzymes, Current Opinion. In: Microbiology, 6, Elsevier, p.213–218
  7. DOW, 2005, The European Chlor–Alkali Industry, EuroChlor Progress Report, Brussel
  8. Gupta A and Rajurkar P, 2001, Waste Minimization in a Chlor–Alkali Plant, Progress Report, Indian Isntitute of Technology, Mumbai-India
  9. Jadhav AB and Pawar SH, 2003, Electrochemical Synthesis of Superconducting magnensium Diboride Film, Supercond. Sci. Technol., 16, pp.752–759
  10. Jia QX, Wang H, Lin Y, Li Y, Foltyn SR, dePaula R, Stan L, and Arendt PN, 2005, Materials and processes of Metal–Oxide Films for Coated Conductors, DOE Wire Workshop, Florida, Januari 19 – 20th
  11. Kipouros GJ and Sadoway DR, 2001, Production of Anhydrous MgCl2, J. Light Metals, 10, 487-494
  12. Kramer DA, 2005, Magnesium Metal, Mineral Commodity Summaries, U.S. Geological Survey
  13. Libes SM, 1992, Evaporites. In: An Introduction to Marine Biogeochemistry, John Wiley and Sons, New York, pp.274–288
  14. Lyday P, 1995, Mineral Commodity Summaries, U.S. Bureau of Mines, p.34
  15. Maddan OL, 2001, Apparatus and Method for Producing Magnesium from Seawater, United State Patent 6267854
  16. Paytan A, Boehm AB, and Shellenbarger GG, 2004, Bacterial Contamination and Submarine Groundwater Discharge. In: Environ. Chem., I, 107(10), 29–30
  17. Pilson MEQ, 1998, Chemical Extraction of Useful Substance from Sea Water. In: Introduction to the Chemistry of the Sea, Prentice Hall, pp.341–350
  18. Rahmanto WH, Haris A, Santosa SJ, Siswanta D, 2004, Imobilisasi Asam Humat Tanah Gambut pada Kitin Cangkang Kepiting untuk Pengambilan Perak, Nikel, dan Krom dalam Limbah Cair, Laporan Penelitian Hibah Pekerti II – DP2M Dikti, Universitas Diponegoro, Semarang
  19. Rahmanto WH, Haris A, Marihati, Siswanta D, Santosa SJ, 2006, Prototipe Elektrolisator Bittern Fleksibel dan Mudah Diatur, Seminar Nasional Kimia & Kongres Nasional Himpunan Kimia Indonesia, LIPI, Jakarta
  20. Rame dan Marihati, Balai Riset & Standarisasi Industri dan Perdagangan, Semarang, 2006, Komunikasi Pribadi
  21. Rieger PH, 1994, Electrochemistry, 2nd ed., Chapman & Hall, New York, pp. 371–411, 274–308
  22. Sedivy VM, 1996, Purification of Salt for Chemical and Human Consumption, Industrial Minerals, April Ed
  23. Selby and Twidwell, 2004, The Recovery and Recycle of Mercury from Chlor–Alkali Plant Wastewater Sludge, Research Study Report, University of Montana, Butte, pp.83–99
  24. Shekhovtsov et.al., 2000, Magnesium Electrolytic Production Process, Magnesium Technology, The Minerals, Metals & Materials Society, Saint-Petersburg
  25. Skoog DA and West DM, 1982, Fundamentals of Analytical Chemistry, 4th Ed., Holt Saunders, Philadelphia, pp. 832
  26. Thayer RL and Neelamegham R, 2001, Improving the Electrolytic Process for Magnesium Production at MagCorp, JOM Industrial Report, August 2001
  27. Walsh FC, 2001, Electrochemical Technology for Environmental Treatment and Clean Energy Conversion, Pure Appl. Chem., 73(12), 1819–1837
  28. UHDE, 2002, Chlor–Alkali Electrolysis Plant: Superior Membrane Process, ThyssenKrupp Technologies Company, Dortmund-Germany
  29. Wilhelm MJ and Williams KC, 1994, Industrial Minerals and Rocks, U.S. Bureau of Mines, p.187

Last update: 2021-02-24 17:45:41

No citation recorded.

Last update: 2021-02-24 17:45:43

No citation recorded.