Penyisihan Bahan Organik Alami pada Desalinasi Air Rawa Asin Menggunakan Proses Koagulasi-Pervaporasi

Removal of natural organic matter for wetland saline water desalination by coagulation-pervaporation

Aulia Rahma  -  Chemical Engineering Department, Universitas Lambung Mangkurat, Indonesia
*Muthia Elma scopus  -  Chemical Engineering Department, Universitas Lambung Mangkurat, Indonesia
Mahmud Mahmud  -  Environmental Engineering, Universitas Lambung Mangkurat, Indonesia
Chairul Irawan  -  Chemical Engineering Department, Universitas Lambung Mangkurat, Indonesia
Amalia Enggar Pratiwi  -  Chemical Engineering Department, Universitas Lambung Mangkurat, Indonesia
Erdina Lulu Atika Rampun  -  Chemical Engineering Department, Universitas Lambung Mangkurat, Indonesia
Received: 31 Mar 2019; Revised: 3 May 2019; Accepted: 16 May 2019; Published: 31 May 2019; Available online: 29 May 2019.
Open Access Copyright 2019 Jurnal Kimia Sains dan Aplikasi

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Article Info
Section: Research Articles
Language: ID
Full Text:
Statistics: 458 234
Abstract
The high number of natural organic matter contain in wetland water may cause its water has brown color and not consumable. In other hand, intrusion of sea water through wetland aquifer create water become saline, notably on hot season. Coagulation is effective method to applied for removing of natural organic matter. However, it could not be used for salinity removal. Hence combination of coagulation and pervaporation process is attractive method to removing both of natural organic matter and conductivity of wetland saline water. The objective of this works is to investigate optimum coagulant doses for removing organic matter by coagulation process as pretreatment and to analysis performance of coagulation-pervaporation silica-pectin membrane for removing of organic matter and conductivity of wetland saline water. Coagulation process in this work carried out under varied aluminum sulfate dose 10-60 mg.L-1. Silica-pectin membrane was used for pervaporation process at feed temperature ~25 °C (room temperature). Optimum condition of pretreatment coagulation set as alum dose at 30 mg.L-1 with maximum removal efficiency 81,8 % (UV254) and 40 % (conductivity). In other hand, combining of coagulation-pervaporation silica-pectin membrane shows both of UV254 and salt rejection extremely good instead without pretreatment coagulation of 86,8 % and 99,9 % for UV254 and salt rejection respectively. Moreover, water flux of silica-pectin membrane pervaporation with coagulation pretreatment shown higher 17,7 % over water flux of wetland saline water without pretreatment coagulation. Combining of coagulation and pervaporation silica-pectin membrane is effective to removing both of organic matter and salinity of wetland saline water at room temperature.
Keywords
Coagulation-pervaporation; conductivity; silica-pectin membrane; UV254; wetland saline water

Article Metrics:

  1. Nadia Eka Pratiwi, Husaini, Eko Suhartono, Filtrasi Campuran Pasir dan Ampas Tahu Kering Sebagai Adsorben Logam Besi dan Mangan pada Air Gambut, Jurnal Berkala Kesehaan, Vol. 2, No 1, (2016) 88-97
  2. Congcong Tang, Zhangwei He, Fangbo Zhao, Xiaoyang Liang, Zhanshuang Li, Effects of cations on the formation of ultrafiltrasi membrane fouling layers when filtering fulvic acid, Desalination, 352, (2014) 174-180 https://doi.org/10.1016/j.desal.2014.08.020
  3. A. W. Zularisam, A. F. Ismail, M. R. Salim, Mimi Sakinah, T. Matsuura, Application of coagulation–ultrafiltration hybrid process for drinking water treatment: Optimization of operating conditions using experimental design, Separation and Purification Technology, 65, 2, (2009) 193-210 https://doi.org/10.1016/j.seppur.2008.10.018
  4. T. Notohardiprawiro, Tanah Estuarin, Watak, Sifat, Kelakuan dan Kesuburannya, Departemen Ilmu Tanah Fakultas Pertanian UGM, Yogyakarta, 1986.
  5. Zuraida Titin Mariana, Muhammad Mahbub, Hidrologi Lahan Pasang Surut di Kalimantan Selatan untuk Mendukung Pertanian: Perubahan Kualitas Air (Kemasaman dan Daya Hantar Listrik), Prosiding Seminar Nasional "Strategi Pemanfaatan Lahan Rawa dalam mendukung Kedaulatan Pangan Nasional", (2015)
  6. Dongmei Han, Claus Kohfahl, Xianfang Song, Guoqiang Xiao, Jilong Yang, Geochemical and isotopic evidence for palaeo-seawater intrusion into the south coast aquifer of Laizhou Bay China, Applied Geochemistry, 26, 5, (2011) 863-883 https://doi.org/10.1016/j.apgeochem.2011.02.007
  7. Martin Pivokonsky, Jana Naceradska, Tomas Brabenec, Katerina Novotna, Magdalena Baresova, Vaclav Janda, The impact of interactions between algal organic matter and humic substances on coagulation, Water Research, 84, (2015) 278-285 https://doi.org/10.1016/j.watres.2015.07.047
  8. Peter Jarvis, Emma Sharp, Marc Pidou, Roger Molinder, Simon A. Parsons, Bruce Jefferson, Comparison of coagulation performance and floc properties using a novel zirconium coagulant against traditional ferric and alum coagulants, Water Research, 46, 13, (2012) 4179-4187 https://doi.org/10.1016/j.watres.2012.04.043
  9. Y. X. Zhao, B. Y. Gao, G. Z. Zhang, Q. B. Qi, Y. Wang, S. Phuntsho, J. H. Kim, H. K. Shon, Q. Y. Yue, Q. Li, Coagulation and sludge recovery using titanium tetrachloride as coagulant for real water treatment: A comparison against traditional aluminum and iron salts, Separation and Purification Technology, 130, (2014) 19-27 https://doi.org/10.1016/j.seppur.2014.04.015
  10. Chris Chow, Mary Drikas, Rolando Fabris, Stephen Gray, Uwe Kaeding, John van Leeuwen, Gayle, Newcombe, Fiona Wellby, CRC for Water Quality and Treatment, Salisbury South Australia, 2005.
  11. Meenakshi, R. C. Maheshwari, Fluoride in drinking water and its removal, Journal of Hazardous Materials, 137, 1, (2006) 456-463 https://doi.org/10.1016/j.jhazmat.2006.02.024
  12. Y. X. Zhao, B. Y. Gao, H. K. Shon, J. H. Kim, Q. Y. Yue, Y. Wang, Floc characteristics of titanium tetrachloride (TiCl4) compared with aluminum and iron salts in humic acid–kaolin synthetic water treatment, Separation and Purification Technology, 81, 3, (2011) 332-338 https://doi.org/10.1016/j.seppur.2011.07.041
  13. Y. X. Zhao, B. Y. Gao, H. K. Shon, B. C. Cao, J. H. Kim, Coagulation characteristics of titanium (Ti) salt coagulant compared with aluminum (Al) and iron (Fe) salts, Journal of Hazardous Materials, 185, 2, (2011) 1536-1542 https://doi.org/10.1016/j.jhazmat.2010.10.084
  14. Y. X. Zhao, S. Phuntsho, B. Y. Gao, Y. Z. Yang, J. H. Kim, H. K. Shon, Comparison of a novel polytitanium chloride coagulant with polyaluminium chloride: Coagulation performance and floc characteristics, Journal of Environmental Management, 147, (2015) 194-202 https://doi.org/10.1016/j.jenvman.2014.09.023
  15. Mahmud Mahmud, Chairul Abdi, Badaruddin Mu'min, Removal Natural Organic Matter (NOM) in Peat Water from Wetland Area by Coagulation-Ultrafiltration Hybrid Process with Pretreatment Two-Stage Coagulation, Journal of Wetlands Environmental Management, 1, 1, (2016)
  16. Dong Bing-zhi, Chen Yan, Gao Nai-yun, Fan Jin-chu, Effect of coagulation pretreatment on the fouling of ultrafiltration membrane, Jurnal of Environmental Science, 19, (2007) 278-283 https://doi.org/10.1016/S1001-0742(07)60045-X
  17. Kah Peng Lee, Tom C. Arnot, Davide Mattia, A review of reverse osmosis membrane materials for desalination—Development to date and future potential, Journal of Membrane Science, 370, 1, (2011) 1-22 https://doi.org/10.1016/j.memsci.2010.12.036
  18. Wladyslaw Kaminski, Joanna Marszalek, Elwira Tomczak, Water desalination by pervaporation – Comparison of energy consumption, Desalination, 433, (2018) 89-93 https://doi.org/10.1016/j.desal.2018.01.014
  19. Bin Liang, Qian Li, Bing Cao, Pei Li, Water permeance, permeability and desalination properties of the sulfonic acid functionalized composite pervaporation membranes, Desalination, 433, (2018) 132-140 https://doi.org/10.1016/j.desal.2018.01.028
  20. Lin Chen, Chengyi Wang, Shanshan Liu, Qinzheng Hu, Liang Zhu, Chuqing Cao, Investigation of the long-term desalination performance of membrane capacitive deionization at the presence of organic foulants, Chemosphere, 193, (2018) 989-997 https://doi.org/10.1016/j.chemosphere.2017.11.130
  21. Xing Yang, Sean Sheridan, Lining Ding, David K. Wang, Simon Smart, João C. Diniz da Costa, Audra Liubinas, Mikel Duke, Inter-layer free cobalt-doped silica membranes for pervaporation of ammonia solutions, Journal of Membrane Science, 553, (2018) 111-116 https://doi.org/10.1016/j.memsci.2018.02.049
  22. M. C. Duke, S. Mee, J. C. Diniz da Costa, Performance of porous inorganic membranes in non-osmotic desalination, Water Research, 41, 17, (2007) 3998-4004 https://doi.org/10.1016/j.watres.2007.05.028
  23. S. Wijaya, M. C. Duke, J. C. Diniz da Costa, Carbonised template silica membranes for desalination, Desalination, 236, 1, (2009) 291-298 https://doi.org/10.1016/j.desal.2007.10.079
  24. M. C. Duke, R. Campbell, X. Cheng, A. Leo, J. C. Diniz da Costa, Characterization and Pervaporation Study on Ethanol Separation Membranes, Drying Technology, 27, 4, (2009) 538-541 http://doi.org/10.1080/07373930802715294
  25. Nadezhda Rangelova, Lyubomir Aleksandrov, Sanchi Nenkova, Synthesis and characterization of pectin/SiO2 hybrid materials, Journal of Sol-Gel Science and Technology, 85, 2, (2018) 330-339 http://doi.org/10.1007/s10971-017-4556-z
  26. Antony Allwyn Sundarraj, Ranganathan Thottiam Vasudevan, Gobikrishnan Sriramulu, Optimized extraction and characterization of pectin from jackfruit (Artocarpus integer) wastes using response surface methodology, International Journal of Biological Macromolecules, 106, (2018) 698-703 https://doi.org/10.1016/j.ijbiomac.2017.08.065
  27. Maria-Magdalena Titirici, Robin J. White, Nicolas Brun, Vitaliy L. Budarin, Dang Sheng Su, Francisco del Monte, James H. Clark, Mark J. MacLachlan, Sustainable carbon materials, Chemical Society Reviews, 44, 1, (2015) 250-290 http://doi.org/10.1039/C4CS00232F
  28. A. Lagazzo, E. Finocchio, P. Petrini, C. Ruggiero, L. Pastorino, Hydrothermal synthesis of pectin derived nanoporous carbon material, Materials Letters, 171, (2016) 212-215 https://doi.org/10.1016/j.matlet.2016.02.105
  29. Muthia Elma, Nur Riskawati, Marhamah, Silica Membranes for Wetland Saline Water Desalination: Performance and Long Term Stability, IOP Conference Series: Earth and Environmental Science, 175, (2018) 012006 http://doi.org/10.1088/1755-1315/175/1/012006
  30. Muthia Elma, Hairullah, Zaini Lambri Assyaifi, Desalination Process via Pervaporation of Wetland Saline Water, IOP Conference Series: Earth and Environmental Science, 175, (2018) 012009 http://doi.org/10.1088/1755-1315/175/1/012009
  31. Muthia Elma, Christelle Yacou, David K. Wang, Simon Smart, João C. Diniz da Costa, Microporous Silica Based Membranes for Desalination, Water, 4, 3, (2012) 629-649 http://doi.org/10.3390/w4030629
  32. Qasim H. Malik, Performance of alum and assorted coagulants in turbidity removal of muddy water, Applied Water Science, 8, 1, (2018) 40 http://doi.org/10.1007/s13201-018-0662-5
  33. Astrid Herawati, Riistika Asti, Bambang Ismuyanto, Julia Nanda, AS Dwi Saptati N Hidayati, Pengaruh pH dan Dosis Koagulan Ekstrak Biji Kelor dalam Koagulasi terhadap Pengurangan Kekeruhan Limbah Cair, Jurnal Rekayasa Bahan Alam dan Energi Berkelanjutan, 1, 1, (2017) 25-28
  34. Mika Sillanpää, Mohamed Chaker Ncibi, Anu Matilainen, Mikko Vepsäläinen, Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review, Chemosphere, 190, Supplement C, (2018) 54-71 https://doi.org/10.1016/j.chemosphere.2017.09.113
  35. P. S. Goh, W. J. Lau, M. H. D. Othman, A. F. Ismail, Membrane fouling in desalination and its mitigation strategies, Desalination, 425, Supplement C, (2018) 130-155 https://doi.org/10.1016/j.desal.2017.10.018
  36. Muthia Elma, Fitriani, Arief Rakhman, Rahmi Hidayati, Silica P123 Membranes for Desalination of Wetland Saline Water in South Kalimantan, IOP Conference Series: Earth and Environmental Science, 175, (2018) 012007 http://doi.org/10.1088/1755-1315/175/1/012007