skip to main content

Potential Antibacterial Activity of Bioactive β-sitosterol from Root Bark of Rhizophora apiculata from Lampung Coastal

Rahmat Kurniawan1 orcid publons scopus Tati Suhartati2orcid scopus Yandri AS2scopus Desi Meriyanti2Sukrasno Sukrasno3scopus

1Chemistry Study Program, Science Department, Institute Technology of Sumatera, Bandar Lampung, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Bandar Lampung, Indonesia

3Center for Research and Innovation of Biological Materials and Natural Materials, Institute Technology of Sumatera, Bandar Lampung, Indonesia

Received: 2 Feb 2021; Revised: 26 Mar 2021; Accepted: 27 Mar 2021; Published: 30 Apr 2021.
Open Access Copyright 2021 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
β-sitosterol is an essential bioactive phytosterol naturally present in plant cell membranes. It has a coincident structure with animal cholesterol. This investigation reported isolation, structure analysis, and an antimicrobial assay of β-sitosterol from the root bark of Bakau Minyak (Rhizophora apiculata) from Lampung coastal. The isolation of β-sitosterol was carried out through maceration using methanol, separation by vacuum liquid chromatography (VLC), and purification by column chromatography (CC) using ethyl acetate/n-hexane (2:8) as eluent. The structure of β-sitosterol was determined using spectroscopic analysis (UV-Vis, FT-IR, 13C-NMR, 1H-NMR, DEPT, and GC-MS). The pure β-sitosterol has 107.4 mg of white needle crystalline compound, the compound melting point about 140.7-141.2oC, the molecular mass confirmed by m/z 414, and UV absorption detected at λ 203.9 nm. The β-sitosterol antimicrobial bioactivity assay has shown potential activity to be developed as a lead compound against E. coli.
Fulltext View|Download
Keywords: Mangrove; β-sitosterol; antibacterial; Lampung coastal

Article Metrics:

  1. Shyamaladevi Babu, Selvaraj Jayaraman, An update on β-sitosterol: A potential herbal nutraceutical for diabetic management, Biomedicine & Pharmacotherapy, 131, (2020), 110702 https://doi.org/10.1016/j.biopha.2020.110702
  2. J. L. Weihrauch, J. M. Gardner, Sterol content of foods of plant origin, Journal of the American Dietetic Association, 73, 1, (1978), 39-47
  3. Mesfin Medihin Ododo, Manash Kumar Choudhury, Ahmed Hussen Dekebo, Structure elucidation of β-sitosterol with antibacterial activity from the root bark of Malva parviflora, SpringerPlus, 5, 1, (2016), 1210 https://doi.org/10.1186/s40064-016-2894-x
  4. Simin Feng, Ling Gan, Chung S. Yang, Anna B. Liu, Wenyun Lu, Ping Shao, Zhuqing Dai, Peilong Sun, Zisheng Luo, Effects of Stigmasterol and β-Sitosterol on Nonalcoholic Fatty Liver Disease in a Mouse Model: A Lipidomic Analysis, Journal of Agricultural and Food Chemistry, 66, 13, (2018), 3417-3425 https://doi.org/10.1021/acs.jafc.7b06146
  5. Santosh B. Dighe, B. S. Kuchekar, S. B. Wankhede, Analgesic and anti-inflammatory activity of β-sitosterol isolated from leaves of Oxalis corniculata, International Journal of Pharmacological Research, 6, 3, (2016), 109-113
  6. Ramalingam Sharmila, Ganapathy Sindhu, Evaluate the Antigenotoxicity and anticancer role of β-Sitosterol by determining oxidative DNA damage and the expression of phosphorylated mitogen-activated protein Kinases’, C-fos, C-Jun, and endothelial growth factor receptor, Pharmacognosy magazine, 13, 49, (2017), 95-101
  7. Lorenzo Fraile, Elisa Crisci, Lorena Córdoba, María A. Navarro, Jesús Osada, María Montoya, Immunomodulatory properties of Beta-sitosterol in pig immune responses, International Immunopharmacology, 13, 3, (2012), 316-321 https://doi.org/10.1016/j.intimp.2012.04.017
  8. Chuanxun Yuan, Xueru Zhang, Xue Long, Jing Jin, Risheng Jin, Effect of β-sitosterol self-microemulsion and β-sitosterol ester with linoleic acid on lipid-lowering in hyperlipidemic mice, Lipids in Health and Disease, 18, 1, (2019), 157 https://doi.org/10.1186/s12944-019-1096-2
  9. Shyamaladevi Babu, Madhan Krishnan, Ponnulakshmi Rajagopal, Vijayalakshmi Periyasamy, Vishnupriya Veeraraghavan, Ramajayam Govindan, Selvaraj Jayaraman, Beta-sitosterol attenuates insulin resistance in adipose tissue via IRS-1/Akt mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats, European Journal of Pharmacology, 873, (2020), 173004 https://doi.org/10.1016/j.ejphar.2020.173004
  10. Yong Joo Park, In Jae Bang, Mi Ho Jeong, Ha Ryong Kim, Da Eun Lee, Jong Hwan Kwak, Kyu Hyuck Chung, Effects of β-Sitosterol from Corn Silk on TGF-β1-Induced Epithelial–Mesenchymal Transition in Lung Alveolar Epithelial Cells, Journal of Agricultural and Food Chemistry, 67, 35, (2019), 9789-9795 https://doi.org/10.1021/acs.jafc.9b02730
  11. Hari Gajula, Vadlapudi Kumar, Poornima D. Vijendra, J. Rajashekar, Torankumar Sannabommaji, Giridhara Basappa, Chapter 5 - Secondary metabolites from mangrove plants and their biological activities, in: J.K. Patra, R.R. Mishra, H. Thatoi (Eds.) Biotechnological Utilization of Mangrove Resources, Academic Press, 2020, https://doi.org/10.1016/B978-0-12-819532-1.00005-6
  12. R. Ponnulakshmi, B. Shyamaladevi, P. Vijayalakshmi, J. Selvaraj, In silico and in vivo analysis to identify the antidiabetic activity of beta sitosterol in adipose tissue of high fat diet and sucrose induced type-2 diabetic experimental rats, Toxicology Mechanisms and Methods, 29, 4, (2019), 276-290 https://doi.org/10.1080/15376516.2018.1545815
  13. Rogelio Paniagua-Pérez, Gabriela Flores-Mondragón, Celia Reyes-Legorreta, Brígida Herrera-López, Isabel Cervantes-Hernández, Osiris Madrigal-Santillán, José Antonio Morales-González, Isela Álvarez-González, Eduardo Madrigal-Bujaidar, Evaluation of the anti-inflammatory capacity of beta-sitosterol in rodent assays, African Journal of Traditional, Complementary and Alternative Medicines, 14, 1, (2017), 123-130 https://doi.org/10.21010/ajtcam.v14i1.13
  14. Food and Drug Administration, in: F. Register (Ed.) 2011-20406, Federal Register, Washington DC, US, 2011, p. 49707-49708
  15. Authority European Food Safety, Plant Sterols and Blood Cholesterol - Scientific substantiation of a health claim related to plant sterols and lower/reduced blood cholesterol and reduced risk of (coronary) heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006, EFSA Journal, 6, 8, (2008), 781 https://doi.org/10.2903/j.efsa.2008.781
  16. Jun Wu, Qiang Xiao, Jing Xu, Min-Yi Li, Jian-Yu Pan, Mei-hua Yang, Natural products from true mangrove flora: source, chemistry and bioactivities, Natural Product Reports, 25, 5, (2008), 955-981 http://dx.doi.org/10.1039/B807365A
  17. V. Sachithanandam, P. Lalitha, A. Parthiban, T. Mageswaran, K. Manmadhan, R. Sridhar, A Review on Antidiabetic Properties of Indian Mangrove Plants with Reference to Island Ecosystem, Evidence-Based Complementary and Alternative Medicine, 2019, (2019), 4305148 https://doi.org/10.1155/2019/4305148
  18. Dioxelis Lopez, Lilia Cherigo, Alejandro de Sedas, Carmenza Spadafora, Evaluation of antiparasitic, anticancer, antimicrobial and hypoglycemic properties of organic extracts from Panamanian mangrove plants, Asian Pacific Journal of Tropical Medicine, 11, 1, (2018), 32 https://doi.org/10.4103/1995-7645.223531
  19. Dini P. Sari, Mohammad Basyuni, Poppy A. Z. Hasibuan, Sumardi Sumardi, Arif Nuryawan, Ridha Wati, Cytotoxic and antiproliferative activity of polyisoprenoids in seventeen mangroves species against WiDr colon cancer cells, Asian Pacific Journal of Cancer Prevention, 19, 12, (2018), 3393-3400 https://dx.doi.org/10.31557/APJCP.2018.19.12.3393
  20. H. N. Thatoi, J. K. Patra, S. K. Das, Free radical scavenging and antioxidant potential of mangrove plants: a review, Acta Physiologiae Plantarum, 36, 3, (2014), 561-579 https://doi.org/10.1007/s11738-013-1438-z
  21. Alik Kandhita Febriani, Ismiyarto Ismiyarto, Khairul Anam, Total Phenolic and Coumarin Content, Antioxidant Activity of Leaves, Fruits, and Stem Barks of Grey Mangrove (Avicennia marina), Jurnal Kimia Sains dan Aplikasi, 23, 2, (2020), 34-38 https://doi.org/10.14710/jksa.23.2.34-38
  22. Shadia M. Abdel-Aziz, Foukia E. Mouafi, Yomna A. Moustafa, Nayera A. M. Abdelwahed, Medicinal Importance of Mangrove Plants, in: N. Garg, S.M. Abdel-Aziz, A. Aeron (Eds.) Microbes in Food and Health, Springer International Publishing, Cham, 2016, https://doi.org/10.1007/978-3-319-25277-3_5
  23. Jayanta Kumar Patra, Hrudaya Nath Thatoi, Metabolic diversity and bioactivity screening of mangrove plants: a review, Acta Physiologiae Plantarum, 33, 4, (2011), 1051-1061 https://doi.org/10.1007/s11738-010-0667-7
  24. Ravindran, K. Venkatesan, Veluchamy Balakrishnan, K. P. Balasubramanian, Ethnomedicinal studies of Pichavaram mangroves of East coast, Tamil Nadu, Indian Journal of Traditional Knowledge, 4, (2005), 409-411
  25. Rahmat Kurniawan, Abstrak Isolasi, Identifikasi, dan Uji Bioaktivitas Senyawa Stigmast-5-En-3β-Ol (Β-Sitosterol) Dari Kulit Akar Bakau Minyak (Rhizophora apiculata) undergraduate thesis, Department of Chemistry, Universitas Lampung, Bandar Lampung, 2014
  26. Mounyr Balouiri, Moulay Sadiki, Saad Koraichi Ibnsouda, Methods for in vitro evaluating antimicrobial activity: A review, Journal of Pharmaceutical Analysis, 6, 2, (2016), 71-79 https://doi.org/10.1016/j.jpha.2015.11.005
  27. Arjun Patra, S Jha, P. N. Murthy, Manik, A. Sharone, Isolation and characterization of stigmast-5-en-3β-ol (β-sitosterol) from the leaves of Hygrophila spinosa T. Anders, International Journal of Pharma Sciences and Research, 1, 2, (2010), 95-100
  28. W. W. Davis, T. R. Stout, Disc Plate Method of Microbiological Antibiotic Assay, Applied Microbiology, 22, 4, (1971), 659-665
  29. Amit Sen, Poonam Dhavan, Kshitiz Kumar Shukla, Sanjay Singh, G Tejovathi, Analysis of IR, NMR and antimicrobial activity of β-sitosterol isolated from Momordica charantia, Science Secure Journal of Biotechnology, 1, 1, (2012), 9-13
  30. J. H. Hoskeri, V. Krishna, S. Jignesh, S. T. Sanjay, A. Roshan, S. Vijay, In-Silico drug designing using β-sitosterol isolated from Flaveria trinervia against peptide deformylase protein to hypothesize bactericidal effect, International Journal of Pharmacy and Pharmaceutical Sciences, 4, 2, (2012), 192-196
  31. Andres F. Zuluaga, Maria Agudelo, Carlos A. Rodriguez, Omar Vesga, Application of microbiological assay to determine pharmaceutical equivalence of generic intravenous antibiotics, BMC Clinical Pharmacology, 9, 1, (2009), 1 https://doi.org/10.1186/1472-6904-9-1

Last update: 2021-06-21 00:37:59

No citation recorded.

Last update: 2021-06-21 00:37:59

No citation recorded.