skip to main content

Bandgap Energy of TiO2/M-Curcumin Material (M = Na+, Mg2+, Cu2+)

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Tanjungpura University, Pontianak, Indonesia

Received: 3 Jun 2021; Revised: 23 Jan 2022; Accepted: 24 Jan 2022; Published: 31 Jan 2022.
Open Access Copyright 2022 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Bandgap energy (Egap) of TiO2/curcumin as well as TiO2/M-curcumin (M = Na+, Mg2+, Cu2+) was determined. The material was prepared on transparent conductive oxide as TiO2 film. Then, the curcumin and curcumin derivatives were adsorbed on TiO2 surface by immersing the film in solution of the compounds. The diffuse reflectance UV-Vis spectra of the materials were recorded and utilized to calculate the Egap using the Tauc plot method. The calculation gave the Egap of TiO2 of 3.27 eV that lowers after being deposited with curcumin and metal-curcumin compounds. The Egap of TiO2/curcumin was 2.82 eV, while TiO2/Na+-curcumin, TiO2/Mg2+-curcumin, and TiO2/Cu2+-curcumin were 2.36, 3.11, and 2.15 eV, respectively. Curcumin metal complexes, i.e., TiO2/Cu2+-curcumin, showed high molar absorptivity and effectively deposited on the TiO2 lowers the bandgap energy of TiO2 compared to free-curcumin on TiO2.
Fulltext View|Download
Keywords: curcumin; TiO2; bandgap energy; Tauc plot method
Funding: Universitas Tanjungpura

Article Metrics:

  1. Yanan Zhang, Abdur Rauf Khan, Manfei Fu, Yujia Zhai, Aihua Yu, Guangxi Zhai, The progresses in curcuminoids-based metal complexes: especially in cancer therapy, Future medicinal chemistry, 11, 9, (2019), 1035-1056 https://doi.org/10.4155/fmc-2018-0190
  2. Simon Wanninger, Volker Lorenz, Abdus Subhan, Frank T. Edelmann, Metal complexes of curcumin–synthetic strategies, structures and medicinal applications, Chemical Society Reviews, 44, 15, (2015), 4986-5002 https://doi.org/10.1039/C5CS00088B
  3. Peni Peni, Risya Sasri, Imelda Hotmarisi Silalahi, Synthesis of Metal–Curcumin Complex Compounds (M = Na⁺, Mg²⁺, Cu²⁺), Jurnal Kimia Sains dan Aplikasi, 23, 3, (2020), 75-82 https://doi.org/10.14710/jksa.23.3.75-82
  4. Moamen S. Refat, Synthesis and characterization of ligational behavior of curcumin drug towards some transition metal ions: Chelation effect on their thermal stability and biological activity, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 105, (2013), 326-337 https://doi.org/10.1016/j.saa.2012.12.041
  5. Bachar Zebib, Zéphirin Mouloungui, Virginie Noirot, Stabilization of curcumin by complexation with divalent cations in glycerol/water system, Bioinorganic chemistry and applications, 2010, (2010), Article ID 292760 https://doi.org/10.1155/2010/292760
  6. Jiawei Gong, K. Sumathy, Qiquan Qiao, Zhengping Zhou, Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends, Renewable and Sustainable Energy Reviews, 68, (2017), 234-246 https://doi.org/10.1016/j.rser.2016.09.097
  7. Monishka Rita Narayan, Review: Dye Sensitized Solar Cells Based on Natural Photosensitizers, Renewable and Sustainable Energy Reviews, 16, 1, (2012), 208-215 https://doi.org/10.1016/j.rser.2011.07.148
  8. Khalil Ebrahim Jasim, Seamas Cassidy, Feryad Zaki Henari, Akil Aziz Dakhel, Curcumin dye-sensitized solar cell, Journal of Energy and Power Engineering, 11, (2017), 409-416 http://dx.doi.org/10.17265/1934-8975/2017.06.006
  9. D. Sinha, D. De, A. Ayaz, Performance and stability analysis of curcumin dye as a photo sensitizer used in nanostructured ZnO based DSSC, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 193, (2018), 467-474 https://doi.org/10.1016/j.saa.2017.12.058
  10. Kokkarachedu Varaprasad, Matias López, Dariela Núñez, Tippabattini Jayaramudu, Emmanuel Rotimi Sadiku, Chandrasekaran Karthikeyan, Patricio Oyarzúnc, Antibiotic copper oxide-curcumin nanomaterials for antibacterial applications, Journal of Molecular Liquids, 300, (2020), 112353 https://doi.org/10.1016/j.molliq.2019.112353
  11. Fatima Mohammed, Fiza Rashid-Doubell, Seamas Cassidy, Fryad Henari, A comparative study of the spectral, fluorometric properties and photostability of natural curcumin, iron-and boron-complexed curcumin, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 183, (2017), 439-450 https://doi.org/10.1016/j.saa.2017.04.027
  12. Mian‐En Yeoh, Kah‐Yoong Chan, Recent advances in photo‐anode for dye‐sensitized solar cells: a review, International Journal of Energy Research, 41, 15, (2017), 2446-2467 https://doi.org/10.1002/er.3764
  13. Samya Banerjee, Akhil R. Chakravarty, Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity, Accounts of chemical research, 48, 7, (2015), 2075-2083 https://doi.org/10.1021/acs.accounts.5b00127
  14. Muhammad Yusprianto, Titin Anita Zaharah, Imelda Hotmarisi Silalahi, Bandgap Energy of TiO₂/M-Chlorophyll Material (M=Cu²⁺, Fe³⁺), Jurnal Kimia Sains dan Aplikasi, 24, 4, (2021), 126-135 https://doi.org/10.14710/jksa.24.4.126-135
  15. Jonathan P. Blitz, Diffuse Reflectance Spectroscopy, in: F.M. Mirabella (Ed.) Modern Techniques in Applied Molecular Spectroscopy, John Wiley & Sons, Inc, New York, 1998,
  16. Patrycja Makuła, Michał Pacia, Wojciech Macyk, How to Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra, The Journal of Physical Chemistry Letters, 9, 23, (2018), 6814-6817 https://doi.org/10.1021/acs.jpclett.8b02892
  17. M. A. Subhan, K. Alam, M. S. Rahaman, M. A. Rahman, R. Awal, Synthesis and characterization of metal complexes containing curcumin (C21H20O6) and study of their anti-microbial activities and DNA-binding properties, Journal of Scientific research, 6, 1, (2014), 97-109 http://dx.doi.org/10.3329/jsr.v6i1.15381
  18. Quang Hieu Tran, Thanh Thao Doan, A novel study on curcumin metal complexes: solubility improvement, bioactivity, and trial burn wound treatment in rats, New Journal of Chemistry, 44, 30, (2020), 13036-13045 https://doi.org/10.1039/D0NJ01159B
  19. William Meza-Morales, Mirian Estevez, Yair Alvarez-Ricardo, Marco Obregón, Julia Cassani, María Apan, Carolina Escobedo, Manuel Soriano, William Reynolds, Raul Enriquez, Full Structural Characterization of Homoleptic Complexes of Diacetylcurcumin with Mg, Zn, Cu, and Mn: Cisplatin-level Cytotoxicity in Vitro with Minimal Acute Toxicity in Vivo, Molecules, 24, 8, (2019), 1598 http://dx.doi.org/10.3390/molecules24081598
  20. Z. M. Abou-Gamra, M. A. Ahmed, Synthesis of mesoporous TiO2–curcumin nanoparticles for photocatalytic degradation of methylene blue dye, Journal of Photochemistry and Photobiology B: Biology, 160, (2016), 134-141 https://doi.org/10.1016/j.jphotobiol.2016.03.054
  21. Azadeh Haghighatzadeh, Comparative analysis on optical and photocatalytic properties of chlorophyll/curcumin-sensitized TiO2 nanoparticles for phenol degradation, Bulletin of Materials Science, 43, 1, (2020), 52 https://doi.org/10.1007/s12034-019-2016-9

Last update:

No citation recorded.

Last update: 2025-01-29 05:39:35

No citation recorded.