Pusat Riset Fisika, BRIN, Ged. 440-442 Kawasan Puspiptek, Serpong, Tangerang Selatan, Banten, Indonesia
BibTex Citation Data :
@article{JKSA41072, author = {Titik Lestariningsih and Qolby Sabrina and Christin Ratri and Achmad Subhan and Slamet Priyono}, title = {The Effect of LiBOB Addition on Solid Polymer Electrolyte (SPE) Production based PVDF-HFP/TiO2/LiTFSI on Ionic Conductivity for Lithium-Ion Battery Applications}, journal = {Jurnal Kimia Sains dan Aplikasi}, volume = {25}, number = {1}, year = {2022}, keywords = {SPE; solution casting; LiBOB, LiTFSI; conductivity}, abstract = { SPE (Solid Polymer Electrolyte) is an alternative to substitute conventional liquid electrolytes as it has a better safety level and has been produced using the solution casting method. An effort to increase the SPE conductivity of the PVDF-HFP/TiO 2 / LiTFSI system has been carried out by adding LiBOB as an additive. LiBOB (lithium bis(oxalate) borate) is a salt compound that can interfere with the crystallization process of polymer chains, so it is expected to increase ion conductivity. However, the results showed a decrease in the conductivity from 3.643 x 10 -5 S/cm to 8.658 x 10 -6 S/cm. These results were proven by the XRD, FTIR, SEM, and TGA characterization. Based on XRD (X-ray Diffraction) analysis, the addition of LiBOB increased the crystallinity phase. The results of the SEM (Scanning Electron Microscope) analysis showed that the pore size was partially reduced, the distance between the pores became longer, and the pore closure occurred due to agglomeration. The FTIR (Fourier Transform Infrared spectroscopy) analysis showed the interaction of LiBOB salts in the PVDF-HFP/LiTFSI/TiO 2 system, and based on TGA (Thermogravimetric Analysis) analysis, the addition of LiBOB affected the heat stability of the SPE. The CV (Cyclic Voltammetry) analysis showed that the addition of LiBOB in the SPE system could reduce the reversibility and magnitude of the current. }, issn = {2597-9914}, pages = {13--19} doi = {10.14710/jksa.25.1.13-19}, url = {https://ejournal.undip.ac.id/index.php/ksa/article/view/41072} }
Refworks Citation Data :
SPE (Solid Polymer Electrolyte) is an alternative to substitute conventional liquid electrolytes as it has a better safety level and has been produced using the solution casting method. An effort to increase the SPE conductivity of the PVDF-HFP/TiO2/ LiTFSI system has been carried out by adding LiBOB as an additive. LiBOB (lithium bis(oxalate) borate) is a salt compound that can interfere with the crystallization process of polymer chains, so it is expected to increase ion conductivity. However, the results showed a decrease in the conductivity from 3.643 x 10-5 S/cm to 8.658 x 10-6 S/cm. These results were proven by the XRD, FTIR, SEM, and TGA characterization. Based on XRD (X-ray Diffraction) analysis, the addition of LiBOB increased the crystallinity phase. The results of the SEM (Scanning Electron Microscope) analysis showed that the pore size was partially reduced, the distance between the pores became longer, and the pore closure occurred due to agglomeration. The FTIR (Fourier Transform Infrared spectroscopy) analysis showed the interaction of LiBOB salts in the PVDF-HFP/LiTFSI/TiO2 system, and based on TGA (Thermogravimetric Analysis) analysis, the addition of LiBOB affected the heat stability of the SPE. The CV (Cyclic Voltammetry) analysis showed that the addition of LiBOB in the SPE system could reduce the reversibility and magnitude of the current.
Article Metrics:
Last update:
Synthesis of carboxymethyl cellulose from coconut fibers and its application as solid polymer electrolyte membranes
Engineering Dry Electrode Manufacturing for Sustainable Lithium-Ion Batteries
Last update: 2024-12-25 20:44:07
As an article writer, the author has the right to use their articles for various purposes, including use by institutions that employ authors or institutions that provide funding for research. Author rights are granted without special permission.
Author who publishes a paper at JKSA has the broad right to use their work for teaching and scientific purposes without the need to ask permission, including: used for (i) teaching in the author's class or institution, (ii) presentation at meetings or conferences and distributing copies to participants ; (iii) training conducted by the author or author's institution; (iv) distribution to colleagues for research use; (v) use in the compilation of subsequent authors' works; (vi) inclusion in a thesis or dissertation; (vi) reuse of part of the article in another work (with citation); (vii) preparation of derivative works (with citation); (viii) voluntary posting on open websites operated by authors or author institutions for scientific purposes (follow the CC BY-SA License).
Authors and readers can copy and redistribute material in any media or format, and mix, modify, and build material for any purpose but they must provide appropriate credit (provide article citation or content), providing links to the license, and indicate if there are changes.
The authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Jurnal Kimia Sains dan Aplikasi (JKSA). Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations.
Reproduce any part of this journal, its storage in the database or its transmission by all forms or media is permitted does not need for written permission from JKSA. However, it should be cited as an honor in academic manners
JKSA and the Chemistry Department of Diponegoro University and the Editor make every effort to ensure that there are no data, opinions, or false or misleading statements published in JKSA. However, the content of the article is the sole and exclusive responsibility of each author.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form - Indonesian] [Copyright Transfer Form - English]. The copyright form should be signed originally and send to the Editor in the form of printed letters, scanned documents sent via email or fax.
Adi Darmawan, Ph.D (Editor in Chief)
Editor in chief of Jurnal Kimia Sains dan Aplikasi (JKSA)
Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University
Visitor: View My Stats
Jurnal Kimia Sains dan Aplikasi is indexed in:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.