Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Hasanuddin, Makassar 90245, Indonesia
BibTex Citation Data :
@article{JKSA46889, author = {Nuritasari Azis and Abdul Wahab and Abdul Karim and Nursiah La Nafie and Triana Febrianti}, title = {Synthesis of Silver Nanoparticles in an Eco-friendly Way using Lannea coromandelica Aqueous Bark Extract}, journal = {Jurnal Kimia Sains dan Aplikasi}, volume = {25}, number = {6}, year = {2022}, keywords = {Synthesis; Silver nanoparticles; Eco-friendly; Lannea coromandelica}, abstract = { In this present study, silver nanoparticles (AgNPs) were synthesized through an easy, rapid, and eco-friendly pathway using Lannea coromandelica aqueous bark extract. The obtained AgNPs were characterized using Ultraviolet-Visible (UV-Vis) spectrophotometer, Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD), and Scanning Electron Microscope (SEM). The results indicated that the pH of colloidal AgNPs played a vital role in forming AgNPs. The pH ranges used in this study were 6, 8, 10, and 12. The formation of AgNPs was confirmed by observing the surface plasmon resonance (SPR) band at each pH and obtaining a wavelength of 430.50, 419.50, 418.50, and 410.00 nm. A comparison of the FTIR spectra of Lannea coromandelica aqueous bark extract and AgNPs showed the contribution of the O-H group in reducing silver ions. XRD diffractogram showed that AgNPs formed at 2θ = 37.8056 o (1 1 1), 44.0345 o (2 0 0), 64.3942 o (2 2 0), dan 77.5003 o (3 1 1) with face-centered cubic (FCC) crystal structure, and the average particle size was 22.5047 nm. SEM results showed that the nanoparticles have a non-uniform and irregular shape. }, issn = {2597-9914}, pages = {224--230} doi = {10.14710/jksa.25.6.224-230}, url = {https://ejournal.undip.ac.id/index.php/ksa/article/view/46889} }
Refworks Citation Data :
In this present study, silver nanoparticles (AgNPs) were synthesized through an easy, rapid, and eco-friendly pathway using Lannea coromandelica aqueous bark extract. The obtained AgNPs were characterized using Ultraviolet-Visible (UV-Vis) spectrophotometer, Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD), and Scanning Electron Microscope (SEM). The results indicated that the pH of colloidal AgNPs played a vital role in forming AgNPs. The pH ranges used in this study were 6, 8, 10, and 12. The formation of AgNPs was confirmed by observing the surface plasmon resonance (SPR) band at each pH and obtaining a wavelength of 430.50, 419.50, 418.50, and 410.00 nm. A comparison of the FTIR spectra of Lannea coromandelica aqueous bark extract and AgNPs showed the contribution of the O-H group in reducing silver ions. XRD diffractogram showed that AgNPs formed at 2θ = 37.8056o (1 1 1), 44.0345o (2 0 0), 64.3942o (2 2 0), dan 77.5003o (3 1 1) with face-centered cubic (FCC) crystal structure, and the average particle size was 22.5047 nm. SEM results showed that the nanoparticles have a non-uniform and irregular shape.
Article Metrics:
Last update:
The Effect of Microwave Power in the Green Synthesis of Silver Nanoparticles Using Citrus sinensis Peels Extract
Last update: 2024-11-20 14:48:23
As an article writer, the author has the right to use their articles for various purposes, including use by institutions that employ authors or institutions that provide funding for research. Author rights are granted without special permission.
Author who publishes a paper at JKSA has the broad right to use their work for teaching and scientific purposes without the need to ask permission, including: used for (i) teaching in the author's class or institution, (ii) presentation at meetings or conferences and distributing copies to participants ; (iii) training conducted by the author or author's institution; (iv) distribution to colleagues for research use; (v) use in the compilation of subsequent authors' works; (vi) inclusion in a thesis or dissertation; (vi) reuse of part of the article in another work (with citation); (vii) preparation of derivative works (with citation); (viii) voluntary posting on open websites operated by authors or author institutions for scientific purposes (follow the CC BY-SA License).
Authors and readers can copy and redistribute material in any media or format, and mix, modify, and build material for any purpose but they must provide appropriate credit (provide article citation or content), providing links to the license, and indicate if there are changes.
The authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Jurnal Kimia Sains dan Aplikasi (JKSA). Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations.
Reproduce any part of this journal, its storage in the database or its transmission by all forms or media is permitted does not need for written permission from JKSA. However, it should be cited as an honor in academic manners
JKSA and the Chemistry Department of Diponegoro University and the Editor make every effort to ensure that there are no data, opinions, or false or misleading statements published in JKSA. However, the content of the article is the sole and exclusive responsibility of each author.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form - Indonesian] [Copyright Transfer Form - English]. The copyright form should be signed originally and send to the Editor in the form of printed letters, scanned documents sent via email or fax.
Adi Darmawan, Ph.D (Editor in Chief)
Editor in chief of Jurnal Kimia Sains dan Aplikasi (JKSA)
Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University
Visitor: View My Stats
Jurnal Kimia Sains dan Aplikasi is indexed in:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.