skip to main content

Synthesis of magnetite using petai (Parkia speciosa) peel extract with ultrasonic waves as reusable catalysts for biodiesel production from waste frying oil

1Department of Chemistry, Universitas Islam Negeri Sunan Kalijaga, Yogyakarta 55281, Indonesia

2Department of Chemistry, Universitas Negeri Semarang, Semarang, Indonesia

3Department of Chemistry Education, Faculty of Teacher Training and Education, Sebelas Maret University, Surakarta, Central Java, Indonesia

Received: 21 Dec 2022; Revised: 25 May 2023; Accepted: 29 May 2023; Published: 30 Jun 2023.
Open Access Copyright 2023 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Magnetite synthesis using petai (Parkia speciosa) peel extract using the sonochemical method (Fe3O4-PPE) has been successfully carried out. Fe3O4-PPE is applied as a catalyst in biodiesel production. This study aimed to determine the physical and chemical characteristics of Fe3O4-PPE and its ability as a reusable catalyst in biodiesel production using waste frying oil as the primary raw material. Characterization of Fe3O4-PPE was carried out using FTIR, XRD, and PSA instruments. Biodiesel was produced in 3 reaction cycles with the same Fe3O4-PPE catalyst. The results of the FTIR characterization showed that the Fe3O4-PPE catalyst had Fe-O bonds from Fe3O4 and -OH phenolic groups, -C-O, -C=C aromatic compounds derived from petai peel extract. The crystal size of the Fe3O4-PPE catalyst based on the results of calculations using Debye-Scherrer from the XRD chromatogram is 9.41 nm. The particle size of the Fe3O4-PPE catalyst based on analysis using PSA was divided into three groups, namely, 5.4 nm, 195 nm, and 2702.6 nm. Fe3O4-PPE was successfully used as a reusable catalyst for three cycles of biodiesel production using waste frying oil as raw material. The characteristics of Fe3O4-PPE before and after being used as a catalyst did not change. Based on GC-MS analysis, the fatty acid methyl ester (FAME) composition of biodiesel is palmitic acid and oleic acid.

Fulltext View|Download
Keywords: biodiesel; magnetite; sonochemistry; waste frying oil; reusable catalysts
Funding: Universitas Islam Negeri Sunan Kalijaga

Article Metrics:

  1. Maryam Helmi, Mahdi Ghadiri, Kambiz Tahvildari, Alireza Hemmati, Biodiesel synthesis using clinoptilolite-Fe3O4-based phosphomolybdic acid as a novel magnetic green catalyst from salvia mirzayanii oil via electrolysis method: Optimization study by Taguchi method. Journal of Environmental Chemical Engineering, 9, (2021), 105988. https://doi.org/10.1016/j.jece.2021.105988
  2. Bishwajit Changmai, Andrew E.H. Wheatley, Ruma Rano, Gopinath Halder, Manickam Selvaraj, Umer Rashid, Samuel Lalthazuala Rokhum, A magnetically separable acid-functionalized nanocatalyst for biodiesel production, Fuel, 305, (2021), 121576. https://doi.org/10.1016/j.fuel.2021.121576
  3. Newton A.Ihoeghian, Mohammed A.Usman, Exergetic evaluation of biodiesel production from rice bran oil using heterogeneous catalyst, Journal of King Saud University-Engineering Sciences, 32:12, (2020), 101–107. https://doi.org/10.1016/j.jksues.2018.11.007
  4. Sajad Tamjidi, Hossein Esmaeili b, Bahareh Kamyab Moghadas, Performance of functionalized magnetic nanocatalysts and feedstocks on biodiesel production: A review study. Journal of Cleaner Production, 305, (2021), 127200. https://doi.org/10.1016/j.jclepro.2021.127200
  5. Ali Bohlouli, Leila Mahdavian, Catalysts used in biodiesel production: a review, Biofuels, 1-14, (2019), 885-898. https://doi.org/10.1080/17597269.2018.1558836
  6. E. G. Silveira Junior, O. R. Justo, V. Perez, I. Reyero, A. Serrano-Lotina, Leonardo Campos Ramirez, Dayana F. dos Santos Dias, Extruded Catalysts with Magnetic Properties for Biodiesel Production, Advances in Materials Science and Engineering, Article ID 3980967, (2018), 1-11. https://doi.org/10.1155/2018/3980967
  7. Indu Ambat, V. Srivastava, E. Haapaniemi, M. Sillanpää, Nano-magnetic potassium impregnated ceria as catalyst for the biodiesel production. Renewable Energy, 139, (2019), 1428-1436. https://doi.org/10.1016/j.renene.2019.03.042
  8. Angelina Rianti, Elfa Karin Parassih, Agnes Erlinda Novenia, Alvin Christpoher, Devi Lestari, Warsono El Kiyat, Potential of Petai (Parkia speciosa) as An Antioxidant Source, Jurnal Dunia Gizi, 1, 1, (2018), 10-19. https://doi.org/10.33085/jdg.v1i1.2901
  9. Maya Rahmayanti, Sri Juari Santosa, Sutarno, Comparative Study on the adsorption of [AuCl]- onto Salicylic Acid and Gallic Acid Modified Magnetite Particles. Indonesian Journal Chemistry, 16, 3, (2016), 329-337. https://doi.org/10.22146/ijc.21150
  10. Maya Rahmayanti, Annisa Nurul Syakina, Is Fatimah, dan Triastuti Sulistyaningsih, Green synthesis of magnetite nanoparticles using peel extract of jengkol (Archidendron pauciflorum) for methylene blue adsorption from aqueous media, Chemical Physics Letters, (2022), 139834. https://doi.org/10.1016/j.cplett.2022.139834
  11. Maya Rahmayanti, Sri Juari Santosa, Sutarno, Sonochemical co-precipitation synthesis of gallic acid-modified magnetite, Advanced Materials Research, (2015), 286-289. https://doi.org/10.4028/www.scientific.net/AMR.1101.286
  12. Yi-Tong Wang, Zhen Fang, Xing-Xia Yang, Ya-Ting Yang, Jia Luo, Kun Xu, Gui-Rong Bao, One-step production of biodiesel from Jatropha oils with high acid value at low temperature by magnetic acid-base amphoteric nanoparticles, Chemical Engineering Journal, (2018), doi: https://doi.org/10.1016/j.cej.2018.05.039
  13. Yen Pin Yew, Kamyar Shameli, Mikio Miyake, Noriyuki Kuwano, Nurul Bahiyah Bt Ahmad Khairudin, Shaza Eva Bt Mohamad & Kar Xin Lee, Green synthesis of magnetite (Fe3O4) nanoparticles using seaweed (Kappaphycus alvarezii) extract. Nanoscale Research Letters, (2016), 276
  14. H. Rasoulzadeh, A. Mohseni-Bandpei, M. Hosseini, M. Safari, Mechanistic investigation of ciproflfloxacin recovery by magnetite–imprinted chitosan nanocomposite: isotherm, kinetic, thermodynamic and reusability studies, International Journal of Biological Macromolecules, (2019), 712–721. https://doi.org/10.1016/j.ijbiomac.2019.04.139
  15. Abin Sebastian, Ashwini Nangia, M.N.V. Prasad, Cadmium and sodium adsorption properties of magnetite nanoparticles synthesized from Hevea brasiliensis Muell. Arg. bark: relevance in amelioration of metal stress in rice, Journal of Hazardous Materials, (2019), 261–271. https://doi.org/10.1016/j.jhazmat.2019.03.021
  16. Denga Ramutshatsha-Makhwedzha, A. Mavhungu, M. L. Moropeng, R. Mbaya,, Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater, Heliyon, 8, (2022), e09930. https://doi.org/10.1016/j.heliyon.2022.e09930
  17. Cristiele Costa de Souza, Lorrana Zélia Martins de Souza, Murat Yılmaz, Magno André de Oliveira, Augusto Cesar da Silva Bezerra, Edilaine Ferreira da Silva, Marcello Rosa Dumont, Alan Rodrigues Teixeira Machado, Activated carbon of Coriandrum sativum for adsorption of methylene blue: Equilibrium and kinetic modeling, Cleaner Materials, 3, (2022), 100052. https://doi.org/10.1016/j.clema.2022.100052
  18. P.C. Nnaji, V.C. Anadebe, I.G. Ezemagu, O.D Onukwuli Nnaji, P.C., Anadebe, V.C., Ezemagu, I.G., Onukwuli, O.D., Potential of Luffffa cylindrica seed as coagulation-flocculation (CF) agent for the treatment of dye wastewater: Kinetic, mass transfer, optimization and CF adsorption studies, Arabian Journal of Chemistry, 15, (2022), 103629. https://doi.org/10.1016/j.arabjc.2021.103629
  19. Abin Sebastian, Ashwini Nangia, M.N.V. Prasad, A green synthetic route to phenolics fabricated magnetite nanoparticles from coconut husk extract: Implications to treat metal contaminated water and heavy metal stress in Oryza sativa L, Journal of Cleaner Production, 2017, doi: 10.1016/j.jclepro.2017.10.343
  20. Henam Sylvia Devi, Muzaffar Ahmad Boda, Mohammad Ashraf Shah, Shazia Parveen and Abdul Hamid Wani, Green synthesis of iron oxide nanoparticles using Platanus orientalis leaf extract for antifungal activity. Green Process Synthesis, 8, (2019), 38–45. https://doi.org/10.1515/gps-2017-0145
  21. Jefry Presson, Yohana Ivana Kedang, Maria Lilita Guterres, Risna Erni Yati Adu, Elisabeth Korbafo, Heri Suseno, Synthesis of Biodiesel from Feun Kase (Thevetia peruviana) Seed Oil Using NaOH Catalyst, Jurnal Kimia Sains dan Aplikasi, 25, 8, (2022), 270-279, https://doi.org/10.14710/jksa.25.8.270-279
  22. Riza Habibi, Enny Fachriyah, Dewi Kusrini, Sintesis biodiesel dari minyak mikroalga nannochloropsis sp. Melalui transesterifikasi menggunakan katalis basa, Jurnal Kimia Sains dan Aplikasi, 13, 1, (2010) 30-35. https://doi.org/10.14710/jksa.13.1.30-35
  23. Isalmi Aziz, Edra Aditya Fhilipia Ardine, Nanda Saridewi, Lisa Adhani, Catalytic cracking of crude biodiesel into biohydrocarbon using natural zeolite impregnated nickel oxide catalyst, Jurnal Kimia Sains dan Aplikasi, 24, 7, (2021), 222-227. https://doi.org/10.14710/jksa.24.7.222-227
  24. Maya Rahmayanti, Guliston Abdillah, Sri Juari Santosa, Sutarno, Application of humic acid isolated from kalimatan peat soil modifying magnetite for recovery of gold. Jurnal Bahan Alam Terbarukan, 8, 2, (2019), 77-83. https://doi.org/10.15294/jbat.v8i2.20392
  25. Maya Rahmayanti, Sri Juari Santosa, Sutarno, Modified humic acid from peat soils with magnetite (Ha-Fe3O4) by using sonochemical technology for gold recovery, Jurnal Bahan Alam Terbarukan, 9, 2, (2020), 81-87. https://doi.org/10.15294/jbat.v9i02.26131
  26. Maya Rahmayanti, Erni Yunita, Nunung Faizah Yosi Putri, Study of adsorption-desorption on batik industrial dyes (naphthol blue black) on magnetite modified humic acid (HA-Fe3O4), Jurnal Kimia Sains dan Aplikasi, 23, 7, (2020), 244–248. https://doi.org/10.14710/jksa.23.7.244-248
  27. Maya Rahmayanti, Indah Nurhikmah, Feni Larasati, Isolation, characterization and application of humin from sumatran peat soils as adsorbent for naphtol blue black and indigosol blue dyes, Molekul, 16, 1, (2021), 67–74. http://dx.doi.org/10.20884/1.jm.2021.16.1.700
  28. Y. Kamisah, F. Othman, H. Qodriyah, K. Jaarin, Parkia speciosa Hassk.: a potential phytomedicine, Evidence-based complementary and alternative medicine : eCAM, (2013), 709028. doi: 10.1155/2013/709028
  29. Suchanuch Wonghirundecha, Soottawat Benjakul, and Punnanee Sumpavapol, Total phenolic content, antioxidant and antimicrobial activities of stink bean (Parkia speciosa Hassk.) pod extracts, Songklanakarin Journal of Science and Technology, 36, 3, (2014), 301-308
  30. Adeyinka S. Yusuff, Aman K. Bhonsle, Dinesh P. Bangwal, Neeraj Atray, Development of a barium-modifified zeolite catalyst for biodiesel production from waste frying oil: Process optimization by design of experiment. Renewable Energy, 177, (2021), 1253-1264. https://doi.org/10.1016/j.renene.2021.06.039

Last update:

  1. The potential of calcium oxide nanocatalyst from chicken eggshells for biodiesel production using chicken fat waste

    Maya Rahmayanti, Is Fatimah, Atika Yahdiyani Ikhsani, Divya Nur Azizah. Inorganic Chemistry Communications, 165 , 2024. doi: 10.1016/j.inoche.2024.112604
  2. Production of Biodiesel from Candlenut Seed Oil (Aleurites Moluccana Wild) Using a NaOH/CaO/Ca Catalyst with Microwave Heating

    Elfrida Siregar, Lisnawaty Simatupang, Jhony Hartanta Sembiring, Elfrida Ginting. Jurnal Kimia Sains dan Aplikasi, 27 (1), 2024. doi: 10.14710/jksa.27.1.21-27
  3. Biosynthesis of titanium dioxide nanoparticles using peel extract of Parkia speciosa for methyl orange degradation

    Khoiriah Khoiriah, Reza Audina Putri. South African Journal of Botany, 170 , 2024. doi: 10.1016/j.sajb.2024.05.021

Last update: 2024-06-20 05:13:23

No citation recorded.