skip to main content

The Correlation between Dye absorption Wavelength and Illumination Wavelength on DSSC Performance

1Physics Department, Faculty of Mathematics and Natural Sciences, Udayana University, Jl. Kampus Bukit Jimbaran, Badung- Bali 80362, Indonesia

2Chemistry Department, Faculty of Mathematics and Natural Sciences, Udayana University, Jl. Kampus Bukit Jimbaran, Badung- Bali 80362, Indonesia

Received: 21 Mar 2023; Revised: 24 May 2023; Accepted: 26 May 2023; Published: 30 Jun 2023.
Open Access Copyright 2023 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

This study examines the effect of the wavelength of light illuminated on DSSC on the absorption wavelength and gap dye energy. The dye used was sea lettuce anthocyanin from Sanur Beach, Bali. As much as 20 grams of dried sea lettuce powder was dissolved in 80 mL of 96% ethanol and 6% HCl. After 24 hours of immersion, it was filtered with Whatman 41 paper. The filtrate was characterized using a UV-Vis-NIR spectrophotometer so that the absorption wavelengths of the anthocyanin dye were 272.5 nm, 417 nm, and 653.5 nm. The gap energy was calculated using the Tauc Plot method, and the result was 2.826 eV. The dye was applied to make DSSC using the sandwich method, which was then irradiated with white, red, and purple LEDs with respective wavelengths of 400–700 nm (with peaks at 439.67 nm and 550.29 nm), 629.04 nm and 425.38 nm and variations in intensity values, namely 1000 lux, 2000 lux, and 3000 lux. Illumination using purple LEDs produces the maximum current and highest efficiency compared to white and red, namely 1.33 mA, 1.57 mA, and 1.83 mA for 1000 lux, 2000 lux, and 3000 lux, respectively, and the efficiency is 0.0039 for 1000 lux. The purple color has a wavelength close to and intersects with the absorbance wavelength of the dye and has energy (2.918 eV) greater than the gap energy of the sea lettuce dye.

Fulltext View|Download
Keywords: absorption wavelength; DSSCs; dye; illumination; sea lettuce
Funding: Universitas Udayana(I)PUU,B/78.772/UN14.4.A/PT.01.03/2022

Article Metrics:

  1. Brian O'regan, Michael Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, (1991), 737-740 https://doi.org/10.1038/353737a0
  2. R. Syafinar, N. Gomesh, M. Irwanto, M. Fareq, Y. M. Irwan, Chlorophyll pigments as nature based dye for dye-sensitized solar cell (DSSC), Energy Procedia, 79, (2015), 896-902 https://doi.org/10.1016/j.egypro.2015.11.584
  3. Gomesh Nair, Syafinar Ramli, Muhammad Irwanto, Mohd Irwan Yusoff, Muhammad Fitra, Uda Hashim, Norman Mariun, Fabrication of Organic Dye Sensitized Solar Cell, Applied Mechanics and Materials, 2015 https://doi.org/10.4028/www.scientific.net/AMM.699.516
  4. Abdul Kariem Arof, Teo Li Ping, Chlorophyll as photosensitizer in dye-sensitized solar cells, Chlorophyll, 7, (2017), 105-121 https://doi.org/10.5772/67955
  5. Ahmed M. Ammar, Hemdan S. H. Mohamed, Moataz M. K. Yousef, Ghada M. Abdel-Hafez, Ahmed S. Hassanien, Ahmed S. G. Khalil, Dye-sensitized solar cells (DSSCs) based on extracted natural dyes, Journal of Nanomaterials, 2019, (2019), 1867271 https://doi.org/10.1155/2019/1867271
  6. Negese Yazie Amogne, Delele Worku Ayele, Yeshitila Asteraye Tsigie, Recent advances in anthocyanin dyes extracted from plants for dye sensitized solar cell, Materials for Renewable and Sustainable Energy, 9, (2020), 23 https://doi.org/10.1007/s40243-020-00183-5
  7. Viqry Pramananda, Teuku Aufar Hadyan Fityay, Erni Misran, Anthocyanin as natural dye in DSSC fabrication: A review, IOP Conference Series: Materials Science and Engineering, 2021 https://doi.org/10.1088/1757-899X/1122/1/012104
  8. Glennise Faye C. Mejica, Yuwalee Unpaprom, Deepanraj Balakrishnan, Natthawud Dussadee, Sermsuk Buochareon, Rameshprabu Ramaraj, Anthocyanin pigment-based dye-sensitized solar cells with improved pH-dependent photovoltaic properties, Sustainable Energy Technologies and Assessments, 51, (2022), 101971 https://doi.org/10.1016/j.seta.2022.101971
  9. Ronnie Concepcion II, Jonnel Alejandrino, Christan Hail Mendigoria, Elmer Dadios, Argel Bandala, Edwin Sybingco, Ryan Rhay Vicerra, Lactuca sativa leaf extract concentration optimization using evolutionary strategy as photosensitizer for TiO2-filmed Grӓtzel cell, Optik, 242, (2021), 166931 https://doi.org/10.1016/j.ijleo.2021.166931
  10. M. R. Munandar, A. S. R. Hakim, H. A. Puspitadindha, S. P. Andiyani, F. Nurosyid, The effect of mixing Chlorophyll-Antocyanin as a natural source dye on the efficiency of dye-sensitized solar cell (DSSC), Journal of Physics: Conference Series, 2022 https://doi.org/10.1088/1742-6596/2190/1/012042
  11. Gabriel Ayinde Alamu, Oluwaseun Adedokun, Ismaila Taiwo Bello, Yekinni Kolawole Sanusi, Plasmonic enhancement of visible light absorption in Ag-TiO2 based dye-sensitized solar cells, Chemical Physics Impact, 3, (2021), 100037 https://doi.org/10.1016/j.chphi.2021.100037
  12. Danladi Eli, Muhammad Sani Ahmad, Ayiya Bitrus Bikimi, O. A. Babatunde, Plasmonic dye sensitized solar cells incorporated with TiO2-Ag nanostructures, International Research Journal of Pure and Applied Chemistry, 11, 3, (2016), 1-7 https://doi.org/10.9734/IRJPAC/2016/25042
  13. Muhammad Yusprianto, Titin Anita Zaharah, Imelda Hotmarisi Silalahi, Bandgap Energy of TiO₂/M-Chlorophyll Material (M= Cu²⁺, Fe³⁺), Jurnal Kimia Sains dan Aplikasi, 24, 4, (2021), 126-135 https://doi.org/10.14710/jksa.24.4.126-135
  14. Irén Juhász Junger, Sarah Vanessa Homburg, Thomas Grethe, Andreas Herrmann, Johannes Fiedler, Anne Schwarz-Pfeiffer, Tomasz Blachowicz, Andrea Ehrmann, Examination of the sintering process-dependent properties of TiO2 on glass and textile substrates, Journal of Photonics for Energy, 7, 1, (2017), 015001 https://doi.org/10.1117/1.JPE.7.015001
  15. Ajay Jena, Shyama Prasad Mohanty, Pragyensh Kumar, Johns Naduvath, Vivekanand Gondane, P. Lekha, Jaykrushna Das, Harsh Kumar Narula, S. Mallick, P. Bhargava, Dye sensitized solar cells: a review, Transactions of the Indian Ceramic Society, 71, 1, (2012), 1-16 https://doi.org/10.1080/0371750X.2012.689503
  16. Kadek Ayu Cintya Adelia, Amrosia Ratna Kodo, Yanti Boimau, Kajian Awal Sifat Optik Senyawa Hasil Ekstraksi Daun Binahong (Anredera Cordifolia) Asal Kabupaten Kupang, Magnetic: Research Journal of Physics and It’s Application, 2, 1, (2022), 112-117 https://doi.org/10.59632/magnetic.v2i1.157
  17. Nishi Srivastava, Arti Singh, Puja Kumari, Jay Hind Nishad, Veer Singh Gautam, Monika Yadav, Rajnish Bharti, Dharmendra Kumar, Ravindra N. Kharwar, Advances in extraction technologies: Isolation and purification of bioactive compounds from biological materials, in: Natural Bioactive Compounds, Elsevier, 2021, https://doi.org/10.1016/B978-0-12-820655-3.00021-5
  18. Anindita Kurniawati, Pengaruh Jenis Pelarut pada Proses Ekstraksi Bunga Mawar dengan Metode Maserasi Sebagai Aroma Parfum, Journal of Creativity Student, 2, 2, (2017), 74-83 https://doi.org/10.15294/jcs.v2i2.14587
  19. Nurzarrah Tazar, Fidela Violalita, Mimi Harni, Pengaruh metoda ekstraksi terhadap karakteristik ekstrak pekat pigmen antosianin dari buah senduduk (melastoma malabathricum L.) serta kajian aktivitas antioksidannya, Lumbung, 17, 1, (2018), 10-17
  20. Supradip Saha, Jashbir Singh, Anindita Paul, Rohan Sarkar, Zareen Khan, Kaushik Banerjee, Anthocyanin profiling using UV-vis spectroscopy and liquid chromatography mass spectrometry, Journal of AOAC International, 103, 1, (2020), 23-39 https://doi.org/10.5740/jaoacint.19-0201
  21. Magdalena M. Y. Missa, Redi K. Pingak, Hadi Imam Sutaji, Penentuan celah energi optik ekstrak daun alpukat (Persea americana Mill) asal desa oinlasi menggunakan metode tauc plot, Jurnal Fisika: Fisika Sains dan Aplikasinya, 3, 1, (2018), 86-90 https://doi.org/10.35508/fisa.v3i1.606
  22. J. Tauc, Radu Grigorovici, Anina Vancu, Optical properties and electronic structure of amorphous germanium, physica status solidi (b), 15, 2, (1966), 627-637 https://doi.org/10.1002/pssb.19660150224
  23. Irén Juhász junger, Daniel Werner, Eva Schwenzfeier-Hellkamp, Andrea Ehrmann, Influence of illumination spectra on DSSC performance, Optik, 177, (2019), 8-12 https://doi.org/10.1016/j.ijleo.2018.09.123
  24. Nurul Yanti Cahaya, Nurrisma Puspitasari, Gontjang Prajitno, Karakterisasi Dye-sensitized Solar Cell (DSSC) Menggunakan TiO2 Nanopartikel dan Klorofil Daun Alfalfa (Megicago Sativa) Sebagai Sensitizer, Jurnal Sains dan Seni ITS, 7, 2, (2019), 66-69 http://dx.doi.org/10.12962/j23373520.v7i2.34596
  25. Kenneth S. Krane, Modern physics, John Wiley & Sons, 2019

Last update:

No citation recorded.

Last update: 2025-01-27 02:15:14

No citation recorded.