skip to main content

A New Combination Method of N-doped TiO2 Nanoparticles Synthesis for Heavy Metal Ions Cr(VI) Photoreduction Applications

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Andalas University, Padang, Indonesia

2Department of Chemistry, Faculty of Science and Technology, Jambi University, Jambi, Indonesia

Received: 2 Jan 2023; Revised: 15 Feb 2023; Accepted: 25 Mar 2023; Published: 31 Mar 2023.
Open Access Copyright 2023 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Through a combination of biosynthetic and hydrothermal methods, N-doped TiO2 photocatalyst has been successfully synthesized using various concentrations of ammonia as a nitrogen source, namely 10% w/w (NTO10), 20% w/w (NTO20), 35% w/w (NTO35), and 50% w/w (NTO50). The synthesis of TiO2 was conducted using Aloe vera (L) Burm F. rind extract as a natural capping agent via the biosynthetic method, followed by a nitrogen doping process via the hydrothermal method. The X-ray Diffraction (XRD) analysis revealed that all phases were anatase. According to the results of the UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS) analysis using the Tauc-Plot method, all N-doped TiO2 samples showed a decrease in the energy gap compared to the TO sample. This indicates that the doping of TiO2 using nitrogen has been successfully doped into TiO2. The photocatalytic activity of N-doped TiO2 was evaluated for the photoreduction of the Cr(VI) model pollutant using a 24-watt LED lamp as a visible light source for 120 minutes. The results indicate that the NTO35 is the best-prepared N-doped TiO2, which showed a reduced rate for the Cr (VI) model pollutant of 50.88%, or two times greater than that of undoped TiO2.
Fulltext View|Download
Keywords: Photoreduction Cr (VI); Biosynthesis; N-Doped TiO2; Aloe vera rind
Funding: Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi; Universitas Andalas

Article Metrics:

  1. Jessica Briffa, Emmanuel Sinagra, Renald Blundell, Heavy metal pollution in the environment and their toxicological effects on humans, Heliyon, 6, 9, (2020), e04691 https://doi.org/10.1016/j.heliyon.2020.e04691
  2. Marzieh Mokarram, Ali Saber, Vahideh Sheykhi, Effects of heavy metal contamination on river water quality due to release of industrial effluents, Journal of Cleaner Production, 277, (2020), 123380 https://doi.org/10.1016/j.jclepro.2020.123380
  3. Md Nur-E-Alam, Md Abu Sayid Mia, Farid Ahmad, Md Mafizur Rahman, An overview of chromium removal techniques from tannery effluent, Applied Water Science, 10, 9, (2020), 205 https://doi.org/10.1007/s13201-020-01286-0
  4. Annamalai Raja, Palani Rajasekaran, Karuppaiah Selvakumar, Mukannan Arivanandhan, Sultan Asath Bahadur, Meenakshisundaram Swaminathan, Efficient photoreduction of hexavalent chromium using the reduced graphene oxide–Sm2MoO6–TiO2 catalyst under visible light illumination, ACS Omega, 5, 12, (2020), 6414-6422 https://doi.org/10.1021/acsomega.9b03923
  5. Rakesh Shrestha, Sagar Ban, Sijan Devkota, Sudip Sharma, Rajendra Joshi, Arjun Prasad Tiwari, Hak Yong Kim, Mahesh Kumar Joshi, Technological trends in heavy metals removal from industrial wastewater: A review, Journal of Environmental Chemical Engineering, 9, 4, (2021), 105688 https://doi.org/10.1016/j.jece.2021.105688
  6. Lu Xu, Xue Bai, Linkai Guo, Shengjiong Yang, Pengkang Jin, Lei Yang, Facial fabrication of carbon quantum dots (CDs)-modified N-TiO2-x nanocomposite for the efficient photoreduction of Cr(VI) under visible light, Chemical Engineering Journal, 357, (2019), 473-486 https://doi.org/10.1016/j.cej.2018.09.172
  7. Ying Zhao, Donglin Zhao, Changlun Chen, Xiangke Wang, Enhanced photo-reduction and removal of Cr(VI) on reduced graphene oxide decorated with TiO2 nanoparticles, Journal of Colloid and Interface Science, 405, (2013), 211-217 https://doi.org/10.1016/j.jcis.2013.05.004
  8. Jianhao Qiu, Ming Li, Lvye Yang, Jianfeng Yao, Facile construction of three-dimensional netted ZnIn2S4 by cellulose nanofibrils for efficiently photocatalytic reduction of Cr(VI), Chemical Engineering Journal, 375, (2019), 121990 https://doi.org/10.1016/j.cej.2019.121990
  9. Ting Ge, Zhikang Jiang, Li Shen, Jing Li, Zhiqi Lu, Yongcai Zhang, Fang Wang, Synthesis and application of Fe3O4/FeWO4 composite as an efficient and magnetically recoverable visible light-driven photocatalyst for the reduction of Cr(VI), Separation and Purification Technology, 263, (2021), 118401 https://doi.org/10.1016/j.seppur.2021.118401
  10. Pooja Sharma, Surendra Pratap Singh, Sheetal Kishor Parakh, Yen Wah Tong, Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction, Bioengineered, 13, 3, (2022), 4923-4938 https://doi.org/10.1080/21655979.2022.2037273
  11. Anh Binh Ngo, Hong Lien Nguyen, Dirk Hollmann, Criticial assessment of the photocatalytic reduction of Cr(VI) over Au/TiO2, Catalysts, 8, 12, (2018), 606 https://doi.org/10.3390/catal8120606
  12. Lingyi Zheng, Zhenglin Chen, Jingsong Han, Zhihui Wei, Lixia Yang, Mingxia Lu, Tianzhu Ma, Liming Yang, An all-in-one photocatalyst: Photocatalytic reduction of Cr(VI) and anchored adsorption of Cr(III) over mesoporous titanium@sulfonated carbon hollow hemispheres, Journal of Environmental Chemical Engineering, 10, 3, (2022), 107864 https://doi.org/10.1016/j.jece.2022.107864
  13. Jayaseelan Arun, S. Nachiappan, Goutham Rangarajan, Ram Prasath Alagappan, K. P. Gopinath, Eric Lichtfouse, Synthesis and application of titanium dioxide photocatalysis for energy, decontamination and viral disinfection: A review, Environmental Chemistry Letters, 21, 1, (2023), 339-362 https://doi.org/10.1007/s10311-022-01503-z
  14. Shipra Mital Gupta, Manoj Tripathi, A review on the synthesis of TiO2 nanoparticles by solution route, Central European Journal of Chemistry, 10, 2, (2012), 279-294 https://doi.org/10.2478/s11532-011-0155-y
  15. Muhammad Atif Irshad, Rab Nawaz, Muhammad Zia ur Rehman, Muhammad Adrees, Muhammad Rizwan, Shafaqat Ali, Sajjad Ahmad, Sehar Tasleem, Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review, Ecotoxicology and Environmental Safety, 212, (2021), 111978 https://doi.org/10.1016/j.ecoenv.2021.111978
  16. Syamsutajri Syamsol Bahri, Zawati Harun, Siti Khadijah Hubadillah, Wan Norhayati Wan Salleh, Nurafiqah Rosman, Noor Hasliza Kamaruddin, Faiz Hafeez Azhar, Norsuhailizah Sazali, Raja Adiba Raja Ahmad, Hatijah Basri, Review on recent advance biosynthesis of TiO2 nanoparticles from plant-mediated materials: characterization, mechanism and application, IOP Conference Series: Materials Science and Engineering, 2021 https://doi.org/10.1088/1757-899X/1142/1/012005
  17. Meghmala S. Waghmode, Aparna B. Gunjal, Javed A. Mulla, Neha N. Patil, Neelu N. Nawani, Studies on the titanium dioxide nanoparticles: Biosynthesis, applications and remediation, SN Applied Sciences, 1, 4, (2019), 310 https://doi.org/10.1007/s42452-019-0337-3
  18. Agnes Mbonyiryivuze, Sidiki Zongo, Abdoulaye Diallo, Sone Bertrand, Evariste Minani, Lakhan Lal Yadav, Bonex W. Mwakikunga, Simon Mokhotjwa Dhlamini, Malik Maaza, Titanium dioxide nanoparticles biosynthesis for dye sensitized solar cells application: review, Physics and Materials Chemistry, 3, 1, (2015), 12-17
  19. Brian Yuliarto, Ni Luh Wulan Septiani, Yusuf Valentino Kaneti, Muhammad Iqbal, Gilang Gumilar, Minjun Kim, Jongbeom Na, Kevin C.-W. Wu, Yusuke Yamauchi, Green synthesis of metal oxide nanostructures using naturally occurring compounds for energy, environmental, and bio-related applications, New Journal of Chemistry, 43, 40, (2019), 15846-15856 https://doi.org/10.1039/C9NJ03311D
  20. F. E. Ettadili, S. Aghris, F. Laghrib, A. Farahi, S. Saqrane, M. Bakasse, S. Lahrich, M. A. El Mhammedi, Recent advances in the nanoparticles synthesis using plant extract: Applications and future recommendations, Journal of Molecular Structure, 1248, (2022), 131538 https://doi.org/10.1016/j.molstruc.2021.131538
  21. Mohammad Aslam, Ahmad Zuhairi Abdullah, Mohd Rafatullah, Recent development in the green synthesis of titanium dioxide nanoparticles using plant-based biomolecules for environmental and antimicrobial applications, Journal of Industrial and Engineering Chemistry, 98, (2021), 1-16 https://doi.org/10.1016/j.jiec.2021.04.010
  22. Diana Vanda Wellia, Dina Nofebriani, Nurul Pratiwi, Safni Safni, Synthesis of Porous N-doped TiO2 by Using Peroxo Sol-Gel Method for Photocatalytic Reduction of Cd(II), Bulletin of Chemical Reaction Engineering & Catalysis, 17, 1, (2022), 103-112 https://doi.org/10.9767/bcrec.17.1.12347.103-112
  23. Patil S. Basavarajappa, Shivaraj B. Patil, Nagaraju Ganganagappa, Kakarla Raghava Reddy, Anjanapura V. Raghu, Ch. Venkata Reddy, Recent progress in metal-doped TiO2, non-metal doped/codoped TiO2 and TiO2 nanostructured hybrids for enhanced photocatalysis, International Journal of Hydrogen Energy, 45, 13, (2020), 7764-7778 https://doi.org/10.1016/j.ijhydene.2019.07.241
  24. Anna Khlyustova, Nikolay Sirotkin, Tatiana Kusova, Anton Kraev, Valery Titov, Alexander Agafonov, Doped TiO2: The effect of doping elements on photocatalytic activity, Materials Advances, 1, 5, (2020), 1193-1201 https://doi.org/10.1039/D0MA00171F
  25. Jong‐Pil Jeon, Do Hyung Kweon, Boo Jae Jang, Myung Jong Ju, Jong‐Beom Baek, Enhancing the photocatalytic activity of TiO2 catalysts, Advanced Sustainable Systems, 4, 12, (2020), 2000197 https://doi.org/10.1002/adsu.202000197
  26. Shiwen Du, Juhong Lian, Fuxiang Zhang, Visible light-responsive N-doped TiO2 photocatalysis: Synthesis, characterizations, and applications, Transactions of Tianjin University, 28, (2021), 33–52 https://doi.org/10.1007/s12209-021-00303-w
  27. Shu Qin Wang, Wen Bo Liu, Peng Fu, Wei Liang Cheng, Enhanced photoactivity of N-doped TiO2 for Cr(VI) removal: Influencing factors and mechanism, Korean Journal of Chemical Engineering, 34, (2017), 1584-1590 https://doi.org/10.1007/s11814-017-0003-7
  28. Xiao Li, Pengwei Liu, Yu Mao, Mingyang Xing, Jinlong Zhang, Preparation of homogeneous nitrogen-doped mesoporous TiO2 spheres with enhanced visible-light photocatalysis, Applied Catalysis B: Environmental, 164, (2015), 352-359 https://doi.org/10.1016/j.apcatb.2014.09.053
  29. Peverga R. Jubu, O. S. Obaseki, A. Nathan-Abutu, F. K. Yam, Yushamdan Yusof, M. B. Ochang, Dispensability of the conventional Tauc’s plot for accurate bandgap determination from UV–vis optical diffuse reflectance data, Results in Optics, 9, (2022), 100273 https://doi.org/10.1016/j.rio.2022.100273
  30. Hsuan-Chung Wu, Syuan-Wei Lin, Jhao-Sian Wu, Effects of nitrogen concentration on N-doped anatase TiO2: density functional theory and Hubbard U analysis, Journal of Alloys and Compounds, 522, (2012), 46-50 https://doi.org/10.1016/j.jallcom.2012.01.071
  31. Hsyi-En Cheng, Yu-Ru Chen, Wen-Tuan Wu, Ching-Ming Hsu, Effect of nitrogen doping concentration on the properties of TiO2 films grown by atomic layer deposition, Materials Science and Engineering: B, 176, 7, (2011), 596-599 https://doi.org/10.1016/j.mseb.2011.02.001
  32. Kesong Yang, Ying Dai, Baibiao Huang, Study of the nitrogen concentration influence on N-doped TiO2 anatase from first-principles calculations, The Journal of Physical Chemistry C, 111, 32, (2007), 12086-12090 https://doi.org/10.1021/jp067491f
  33. K. S. Venkatesh, S. R. Krishnamoorthi, N. S. Palani, V. Thirumal, Sujin P. Jose, Fu-Ming Wang, R. Ilangovan, Facile one step synthesis of novel TiO2 nanocoral by sol–gel method using Aloe vera plant extract, Indian Journal of Physics, 89, (2015), 445-452 https://doi.org/10.1007/s12648-014-0601-8
  34. Tao Xu, Mo Wang, Tong Wang, Effects of N doping on the microstructures and optical properties of TiO2, Journal Wuhan University of Technology, Materials Science Edition, 34, 1, (2019), 55-63 https://doi.org/10.1007/s11595-019-2014-1
  35. S. Srujana, M. Anjamma, Bharat Singh, Ram C. Dhakar, Shanthi Natarajan, Ramana Hechhu, A Comprehensive Study on the Synthesis and Characterization of TiO2 Nanoparticles Using Aloe vera Plant Extract and Their Photocatalytic Activity against MB Dye, Adsorption Science & Technology, 2022, (2022), 7244006 https://doi.org/10.1155/2022/7244006

Last update:

  1. Rind of Aloe vera (L.) Burm. f extract for the synthesis of titanium dioxide nanoparticles: Properties and application in model dye pollutant degradation

    Diana Vanda Wellia, Atika Fildza Syuadi, Resha Mutia Rahma, Atika Syafawi, M. Rafli Habibillah, Syukri Arief, Kiki Adi Kurnia, Saepurahman, Yuly Kusumawati, Asep Saefumillah. Case Studies in Chemical and Environmental Engineering, 9 , 2024. doi: 10.1016/j.cscee.2024.100627

Last update: 2024-04-18 01:05:56

No citation recorded.