skip to main content

Development of Microfluidic Paper-Based Analytical Devices (µPADs) for Determination of Cd2+, Pb2+, and Cu2+ Ions in Mineral Water

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, 16424, Indonesia

2School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

Received: 1 Sep 2023; Revised: 7 Nov 2023; Accepted: 10 Nov 2023; Published: 8 Dec 2023.
Open Access Copyright 2023 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Microfluidic paper-based analytical devices (µPADs) have been successfully developed using dual detection: electrochemical and colorimetric systems. The µPADs have the potential to be used as Pb(II), Cd(II), and Cu(II) sensors to test the quality of water. The fabrication process uses hot embossing and screen-printing methods. The working electrode in the electrochemical zone was enhanced by the bismuth metal deposition process, while in the colorimetric zone, the gold nanoparticles modified with thioctic acid and dansylhydrazine (TA-Au-DNS) were used as a colorimetric sensor to detect Cu. The basic material of µPADs was characterized using a Fourier-transform infrared (FTIR) and a contact angle meter (CAM). In the electrochemical zone, the signals of square wave anodic stripping voltammetry (SWASV) resulted in good detection of Pb(II) and Cd(II) (from 0 to 100 ppb) with a limit of detection of 1.588 and 1.42 ppb, respectively. In the colorimetric zone, the performance of TA-Au-DNS for detecting Cu metal was obtained from readings through the red-green-blue (RGB) sensor as a miniature of µPADs reader. The LOD, LOQ, and average Vx0 (linearity values) in the detection of Cu(II) (from 58 to 100 ppb) are 8.51 ppb, 28.36 ppb, and 0.41%, respectively.

Fulltext View|Download
Keywords: dual detection systems; hot embossing; microfluidic paper-based analytical devices; RGB sensor; screen printing; square wave anodic stripping voltammetry
Funding: Badan Pengawas Obat dan Makanan;Departemen Kimia - Universitas Indonesia

Article Metrics:

  1. Jillian E. Gall, Robert S. Boyd, Nishanta Rajakaruna, Transfer of heavy metals through terrestrial food webs: a review, Environmental Monitoring and Assessment, 187, (2015), 201 https://doi.org/10.1007/s10661-015-4436-3
  2. Peuli Nath, Ravi Kumar Arun, Nripen Chanda, Smart gold nanosensor for easy sensing of lead and copper ions in solution and using paper strips, RSC Advances, 5, 84, (2015), 69024-69031 https://doi.org/10.1039/C5RA14886C
  3. Mehrdad Rafati-Rahimzadeh, Mehravar Rafati-Rahimzadeh, Sohrab Kazemi, Aliakbar Moghadamnia, Cadmium toxicity and treatment: An update, Caspian Journal of Internal Medicine, 8, 3, (2017), 135-145 http://dx.doi.org/10.22088/cjim.8.3.135
  4. Karl E. Mason, A Conspectus of Research on Copper Metabolism and Requirements of Man, The Journal of Nutrition, 109, 11, (1979), 1979-2066 https://doi.org/10.1093/jn/109.11.1979
  5. World Health Organization, Guidelines for drinking-water quality, 3rd edition: Volume 1 - Recommendations incorporating the first and second addenda, 1, (2008),
  6. Rajneet Kour Soodan, Yogesh B. Pakade, Avinash Nagpal, Jatinder Kaur Katnoria, Analytical techniques for estimation of heavy metals in soil ecosystem: A tabulated review, Talanta, 125, (2014), 405-410 https://doi.org/10.1016/j.talanta.2014.02.033
  7. Ulrich Guth, Winfried Vonau, Jens Zosel, Recent developments in electrochemical sensor application and technology—a review, Measurement Science and Technology, 20, 4, (2009), 042002 https://doi.org/10.1088/0957-0233/20/4/042002
  8. Panpan Wang, Lei Ge, Mei Yan, Xianrang Song, Shenguang Ge, Jinghua Yu, Paper-based three-dimensional electrochemical immunodevice based on multi-walled carbon nanotubes functionalized paper for sensitive point-of-care testing, Biosensors and Bioelectronics, 32, 1, (2012), 238-243 https://doi.org/10.1016/j.bios.2011.12.021
  9. Zhihong Nie, Christian A. Nijhuis, Jinlong Gong, Xin Chen, Alexander Kumachev, Andres W. Martinez, Max Narovlyansky, George M. Whitesides, Electrochemical sensing in paper-based microfluidic devices, Lab on a Chip, 10, 4, (2010), 477-483 https://doi.org/10.1039/B917150A
  10. Liu-Liu Shen, Gui-Rong Zhang, Bastian J. M. Etzold, Paper-Based Microfluidics for Electrochemical Applications, ChemElectroChem, 7, 1, (2020), 10-30 https://doi.org/10.1002/celc.201901495
  11. Mahroo Baharfar, Mohammad Rahbar, Mohammad Tajik, Guozhen Liu, Engineering strategies for enhancing the performance of electrochemical paper-based analytical devices, Biosensors and Bioelectronics, 167, (2020), 112506 https://doi.org/10.1016/j.bios.2020.112506
  12. Jianjun Shi, Fan Tang, Honglong Xing, Huxiang Zheng, Bi Lianhua, Wang Wei, Electrochemical detection of Pb and Cd in paper-based microfluidic devices, Journal of the Brazilian Chemical Society, 23, 6, (2012), 1124-1130 https://doi.org/10.1590/S0103-50532012000600018
  13. Mariana Medina-Sánchez, Miquel Cadevall, Josep Ros, Arben Merkoçi, Eco-friendly electrochemical lab-on-paper for heavy metal detection, Analytical and Bioanalytical Chemistry, 407, (2015), 8445-8449 https://doi.org/10.1007/s00216-015-9022-6
  14. Liu-Liu Shen, Gui-Rong Zhang, Wei Li, Markus Biesalski, Bastian J. M. Etzold, Modifier-Free Microfluidic Electrochemical Sensor for Heavy-Metal Detection, ACS Omega, 2, 8, (2017), 4593-4603 https://doi.org/10.1021/acsomega.7b00611
  15. Meng Zhang, Lei Ge, Shenguang Ge, Mei Yan, Jinghua Yu, Jiadong Huang, Su Liu, Three-dimensional paper-based electrochemiluminescence device for simultaneous detection of Pb2+ and Hg2+ based on potential-control technique, Biosensors and Bioelectronics, 41, (2013), 544-550 https://doi.org/10.1016/j.bios.2012.09.022
  16. Sudkate Chaiyo, Amara Apiluk, Weena Siangproh, Orawon Chailapakul, High sensitivity and specificity simultaneous determination of lead, cadmium and copper using μPAD with dual electrochemical and colorimetric detection, Sensors and Actuators B: Chemical, 233, (2016), 540-549 https://doi.org/10.1016/j.snb.2016.04.109
  17. Niels Postulka, Andreas Striegel, Marcel Krauße, Dario Mager, Dieter Spiehl, Tobias Meckel, Matthias Worgull, Markus Biesalski, Combining Wax Printing with Hot Embossing for the Design of Geometrically Well-Defined Microfluidic Papers, ACS Applied Materials & Interfaces, 11, 4, (2019), 4578-4587 https://doi.org/10.1021/acsami.8b18133
  18. Wulan Tri Wahyuni, Budi Riza Putra, Achmad Fauzi, Desi Ramadhanti, Eti Rohaeti, Rudi Heryanto, A Brief Review on Fabrication of Screen-Printed Carbon Electrode: Materials and Techniques, Indonesian Journal of Chemical Research, 8, 3, (2021), 210-218 https://doi.org/10.30598//ijcr.2021.7-wul
  19. I. U. Haq, S. Amin, Lipoic acid-A short review, Science International (Lahore), 19, 4, (2007), 273-276
  20. Daniel Martín-Yerga, Isabel Álvarez-Martos, M. Carmen Blanco-López, Charles S. Henry, M. Teresa Fernández-Abedul, Point-of-need simultaneous electrochemical detection of lead and cadmium using low-cost stencil-printed transparency electrodes, Analytica Chimica Acta, 981, (2017), 24-33 https://doi.org/10.1016/j.aca.2017.05.027
  21. Andres W. Martinez, Scott T. Phillips, George M. Whitesides, Emanuel Carrilho, Diagnostics for the Developing World: Microfluidic Paper-Based Analytical Devices, Analytical Chemistry, 82, 1, (2010), 3-10 https://doi.org/10.1021/ac9013989
  22. Weian Zhao, M. Monsur Ali, Sergio D. Aguirre, Michael A. Brook, Yingfu Li, Paper-Based Bioassays Using Gold Nanoparticle Colorimetric Probes, Analytical Chemistry, 80, 22, (2008), 8431-8437 https://doi.org/10.1021/ac801008q
  23. Deepak Varshney, Majid Ahmadi, Maxime J. F. Guinel, Brad R. Weiner, Gerardo Morell, Single-step route to diamond-nanotube composite, Nanoscale Research Letters, 7, (2012), 535 https://doi.org/10.1186/1556-276X-7-535
  24. Douglas A. Skoog, F. James Holler, Stanley R. Crouch, Principles of instrumental analysis, Seventh edition ed., Cengage Learning Australia, Australia, 2018,
  25. S. B. Eskander, H. M. Saleh, Wet oxidative degradation of cellulosic wastes: decomposition of waste protective clothes simulate, Academic Journal of Chemistry, 1, 3, (2016), 93-101
  26. Abraham Marmur, Volpe Claudio Della, Stefano Siboni, Alidad Amirfazli, Jaroslaw W. Drelich, Contact angles and wettability: towards common and accurate terminology, Surface Innovations, 5, 1, (2017), 3-8 https://doi.org/10.1680/jsuin.17.00002
  27. Xuan Xie, Rudolf Holze, Electrode Kinetic Data: Geometric vs. Real Surface Area, Batteries, 8, 10, (2022), 146 https://doi.org/10.3390/batteries8100146
  28. Dennis H. Evans, Kathleen M. O'Connell, Ralph A. Petersen, Michael J. Kelly, Cyclic voltammetry, Journal of Chemical Education, 60, 4, (1983), 290 https://doi.org/10.1021/ed060p290
  29. R. C. Murray, P. A. Rock, The determination of the ferrocyanide—ferricyanide standard electrode potential at 25°C in cells without liquid junction using cation-sensitive glass electrodes, Electrochimica Acta, 13, 4, (1968), 969-975 https://doi.org/10.1016/0013-4686(68)85028-5
  30. O. A. González-Meza, E. R. Larios-Durán, A. Gutiérrez-Becerra, N. Casillas, J. I. Escalante, M. Bárcena-Soto, Development of a Randles-Ševčík-like equation to predict the peak current of cyclic voltammetry for solid metal hexacyanoferrates, Journal of Solid State Electrochemistry, 23, 11, (2019), 3123-3133 https://doi.org/10.1007/s10008-019-04410-6
  31. Zhiwei Lu, Junjun Zhang, Wanlin Dai, Xueni Lin, Jiaping Ye, Jianshan Ye, A screen-printed carbon electrode modified with a bismuth film and gold nanoparticles for simultaneous stripping voltammetric determination of Zn(II), Pb(II) and Cu(II), Microchimica Acta, 184, 12, (2017), 4731-4740 https://doi.org/10.1007/s00604-017-2521-8
  32. Alejandro García-Miranda Ferrari, Christopher W. Foster, Peter J. Kelly, Dale A. C. Brownson, Craig E. Banks, Determination of the Electrochemical Area of Screen-Printed Electrochemical Sensing Platforms, Biosensors, 8, 2, (2018), 53 https://doi.org/10.3390/bios8020053
  33. Sergio I. Martinez-Monteagudo, Electrochemical Analysis, in: P.L.H. McSweeney, J.P. McNamara (Eds.) Encyclopedia of Dairy Sciences (Third Edition), Academic Press, Oxford, 2022, https://doi.org/10.1016/B978-0-12-818766-1.00340-8
  34. Neda Shahbazi, Rouholah Zare-Dorabei, A Facile Colorimetric and Spectrophotometric Method for Sensitive Determination of Metformin in Human Serum Based on Citrate-Capped Gold Nanoparticles: Central Composite Design Optimization, ACS Omega, 4, 17, (2019), 17519-17526 https://doi.org/10.1021/acsomega.9b02389
  35. AOAC International, Appendix F Guidelines for Standard Method Performance Requirements, in: G.W. Latimer, Jr. (Ed.) Official Methods of Analysis of AOAC INTERNATIONAL, Oxford University Press, 2023, https://doi.org/10.1093/9780197610145.005.006
  36. A. Fajgelj, Á. Ambrus, William Horwitz, The potential use of quality control data to validate pesticide residue method performance, in: A. Fajgelj, A. Ambrus (Eds.) Principles and Practices of Method Validation, The Royal Society of Chemistry, 2000, https://doi.org/10.1039/9781847551757-00001
  37. Gaviña Pablo, Parra Margarita, Gil Salvador, M. Costero Ana, Red or Blue? Gold Nanoparticles in Colorimetric Sensing, in: R. Mohammed, A. Abdullah Mohammed (Eds.) Gold Nanoparticles, IntechOpen, Rijeka, 2018, https://doi.org/10.5772/intechopen.80052

Last update:

No citation recorded.

Last update: 2024-11-02 01:54:13

No citation recorded.