skip to main content

Synthesis and Characterization of Corn Husk (Zea Mays L.) Cellulose Using Microwave-Assisted Extraction (MAE)

1Department of Chemistry, Faculty of Science and Mathematics, IPB University, Bogor 16680, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia

Received: 2 Sep 2023; Revised: 18 Sep 2023; Accepted: 9 Oct 2023; Published: 5 Nov 2023.
Open Access Copyright 2023 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

This research focuses on synthesizing cellulose from corn husks using microwave-assisted extraction (MAE), which aims to produce cellulose from corn husks through liquefaction, delignification, and bleaching processes. The total time required is only 14 minutes, thus shortening the process time. This study used three power variations: 450 W, 600 W, and 800 W. The results showed that the optimum conditions occurred at 800 W power. Hence, the higher the power caused the high cellulose content obtained, which amounted to 75.23% and decreased the lignin value to 15.78%, along with the increase in microwave power. FTIR analysis also confirmed the cellulose results obtained and indicated that the lignin groups were weakened or lost. Furthermore, morphological analysis of cellulose fibers by SEM showed that the surface of cellulose fibers was rough, oval, and irregular due to cracks caused by erosion. Then, the result of cellulose crystallinity using XRD was 45.8%. Compared to conventional methods, microwave-assisted cellulose synthesis exhibits better and more promising potential. This is because microwave radiation can be used to improve process time efficiency and achieve higher yields. Moreover, the proposed method is easier, faster, and straightforward.

Fulltext View|Download
Keywords: Cellulose; Corn husk; Microwave-assisted Extraction (MAE)

Article Metrics:

  1. Haisong Qi, Novel Functional Materials Based on Cellulose, 1 ed., Springer Cham, 2017, ^ https://doi.org/10.1007/978-3-319-49592-7
  2. Neftali L. V. Carreño, Ananda M. Barbosa, Bruno S. Noremberg, Mabel M. S. Salas, Susana C. M. Fernandes, Jalel Labidi, Advances in Nanostructured Cellulose-based Biomaterials, in: N.L.V. Carreño, A.M. Barbosa, B.S. Noremberg, M.M.S. Salas, S.C.M. Fernandes, J. Labidi (Eds.) Advances in Nanostructured Cellulose-based Biomaterials, Springer International Publishing, Cham, 2017, https://doi.org/10.1007/978-3-319-58158-3_1
  3. Taiwo K. Fagbemigun, O. D. Fagbemi, O. Otitoju, E. Mgbachiuzor, C. C. Igwe, Pulp and paper-making potential of corn husk, International Journal of AgriScience, 4, 4, (2014), 209-212
  4. Sri Winarsih, Pengarun Konsentrasi NaOH dan Lama Pemaparan Microwave terhadap Kandungan Selulosa, Hemiselulosa dan Lignin Tongkol Jagung, Faculty of Engineering, Universitas Islam Majapahit, 2016
  5. Novian Wely Asmoro, Afriyanti Afriyanti, Ismawati Ismawati, Ekstraksi selulosa batang tanaman jagung (zea mays) metode basa, Jurnal Ilmiah Teknosains, 4, 1, (2018), 24-28 https://doi.org/10.26877/jitek.v4i1.1710
  6. Syamsul Bahri, Pembuatan Serbuk Pulp dari Daun Jagung, Jurnal Teknologi Kimia Unimal, 4, 1, (2017), 46-59
  7. Djalal Trache, M. Hazwan Hussin, Caryn Tan Hui Chuin, Sumiyyah Sabar, M. R. Nurul Fazita, Owolabi F. A. Taiwo, T. M. Hassan, M. K. Mohamad Haafiz, Microcrystalline cellulose: Isolation, characterization and bio-composites application—A review, International Journal of Biological Macromolecules, 93, (2016), 789-804 https://doi.org/10.1016/j.ijbiomac.2016.09.056
  8. Arzu Yalçın Melikoğlu, Seda Ersus Bilek, Serap Cesur, Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace, Carbohydrate Polymers, 215, (2019), 330-337 https://doi.org/10.1016/j.carbpol.2019.03.103
  9. Li-Yu Chen, Xiang-Guang Meng, Wen-Wang Yu, Yu-Lian Zhang, Zi-Yu Gan, Cheng Yang, Efficient separation of cellulose from bamboo by organic alkali, Cellulose, 30, (2023), 1369-1379 https://doi.org/10.1007/s10570-022-04969-w
  10. Brody A. Frost, Earl Johan Foster, Isolation of Thermally Stable Cellulose Nanocrystals from Spent Coffee Grounds via Phosphoric Acid Hydrolysis, Journal of Renewable Materials, 8, 2, (2020), 187-203 https://doi.org/10.32604/jrm.2020.07940
  11. Dan-Thuy Van-Pham, Thi Yen Nhu Pham, Minh Chien Tran, Chanh-Nghiem Nguyen, Qui Tran-Cong-Miyata, Extraction of thermally stable cellulose nanocrystals in short processing time from waste newspaper by conventional acid hydrolysis, Materials Research Express, 7, (2020), 065004 https://doi.org/10.1088/2053-1591/ab9668
  12. Peng Tao, Yuehua Zhang, Zhengmei Wu, Xiaoping Liao, Shuangxi Nie, Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: transition of cellulose crystal structure, Carbohydrate Polymers, 214, (2019), 1-7 https://doi.org/10.1016/j.carbpol.2019.03.012
  13. Facundo Beltramino, M. Blanca Roncero, Teresa Vidal, Cristina Valls, A novel enzymatic approach to nanocrystalline cellulose preparation, Carbohydrate Polymers, 189, (2018), 39-47 https://doi.org/10.1016/j.carbpol.2018.02.015
  14. Supachok Tanpichai, Suteera Witayakran, Anyaporn Boonmahitthisud, Study on structural and thermal properties of cellulose microfibers isolated from pineapple leaves using steam explosion, Journal of Environmental Chemical Engineering, 7, 1, (2019), 102836 https://doi.org/10.1016/j.jece.2018.102836
  15. Flávia Debiagi, Paula C. S. Faria-Tischer, Suzana Mali, Nanofibrillated cellulose obtained from soybean hull using simple and eco-friendly processes based on reactive extrusion, Cellulose, 27, (2020), 1975-1988 https://doi.org/10.1007/s10570-019-02893-0
  16. Inda Iliyin, Henny Purwaningsih, Tun Tedja Irawadi, Isolation and Characterization of Cellulose from Banana Stems using Microwave Heating, Jurnal Kimia Valensi, 6, 2, (2020), 169-176 https://doi.org/10.15408/jkv.v6i2.15962
  17. Anitarakhmi Handaratri, Yuyun Yuniati, Kajian Ekstraksi Antosianin dari Buah Murbei dengan Metode Sonikasi dan Microwave, Reka Buana: Jurnal Ilmiah Teknik Sipil Dan Teknik Kimia, 4, 1, (2019), 63-67 https://doi.org/10.33366/rekabuana.v4i1.1162
  18. Tangbin Zou, Dongliang Wang, Honghui Guo, Yanna Zhu, Xiaoqin Luo, Fengqiong Liu, Wenhua Ling, Optimization of Microwave-Assisted Extraction of Anthocyanins from Mulberry and Identification of Anthocyanins in Extract Using HPLC-ESI-MS, Journal of Food Science, 77, 1, (2012), C46-C50 https://doi.org/10.1111/j.1750-3841.2011.02447.x
  19. Jiulong Xie, Chung-Yun Hse, F. De Hoop Cornelis, Tingxing Hu, Jinqiu Qi, Todd F. Shupe, Isolation and characterization of cellulose nanofibers from bamboo using microwave liquefaction combined with chemical treatment and ultrasonication, Carbohydrate Polymers, 151, (2016), 725-734 https://doi.org/10.1016/j.carbpol.2016.06.011
  20. Nick Sweygers, Niels Alewaters, Raf Dewil, Lise Appels, Microwave effects in the dilute acid hydrolysis of cellulose to 5-hydroxymethylfurfural, Scientific reports, 8, (2018), 7719 https://doi.org/10.1038/s41598-018-26107-y
  21. Burcu Orhan, Cengiz Ayhan Ziba, Mehmet Hakan Morcali, Mustafa Dolaz, Synthesis of hydroxyethyl cellulose from industrial waste using microwave irradiation, Sustainable Environment Research, 28, 6, (2018), 403-411 https://doi.org/10.1016/j.serj.2018.07.004
  22. Roshanak Khandanlou, Gek Cheng Ngoh, Wen Tong Chong, Feasibility study and structural analysis of cellulose isolated from rice husk: Microwave irradiation, optimization, and treatment process scheme, BioResources, 11, 3, (2016), 5751-5766
  23. Meng Li, Yan-Ling Cheng, Nan Fu, Dong Li, Benu Adhikari, Xiao Dong Chen, Isolation and Characterization of Corncob Cellulose Fibers using Microwave-Assisted Chemical Treatments, International Journal of Food Engineering, 10, 3, (2014), 427-436 https://doi.org/10.1515/ijfe-2014-0052
  24. Lucky Wahyu Nuzulia Setyaningsih, Tintin Mutiara, Clara Yusticia Hapsari, Nabila Kusumaningtyas, Haris Munandar, Romy Jefry Pranata, Karakteristik dan Aplikasi Selulosa Kulit Jagung Pada Pengembangan Hidrogel, Journal of Science and Applicative Technology, 4, 2, (2020), 61-66 https://doi.org/10.35472/jsat.v4i2.252
  25. Eero Sjostrom, Kimia Kayu: Dasar-Dasar Penggunaan, H. Sastrohamidjojo, S. Prawirohatmodjo, Gadjah Mada University Press, Yogyakarta, 1995,
  26. Fitriani Fitriani, Syaiful Bahri, Nurhaeni Nurhaeni, Produksi Bioetanol Tongkol Jagung (Zea Mays) dari Hasil Proses Delignifikasi, Natural Science: Journal of Science and Technology, 2, 3, (2013), 66-74 https://doi.org/10.22487/25411969.2013.v2.i3.1868
  27. Harry Rizka Permatasari, Fakhili Gulo, Bety Lesmini, Pengaruh konsentrasi H2SO4 dan NaOH terhadap delignifikasi serbuk bambu (Gigantochloa Apus), Jurnal Penelitian Pendidikan Kimia: Kajian Hasil Penelitian Pendidikan Kimia, 1, 2, (2014), 131-140
  28. Lia Lismeri, Lismeri Lia, Yuli Darni, Pengaruh Suhu dan Waktu Pretreatment Alkali pada Isolasi Selulosa Limbah Batang Pisang, Jurnal of Chemical Process Engineering, 4, 1, (2019), 18-22 https://doi.org/10.33536/jcpe.v4i1.319
  29. Dietrich Fengel, Gerd Wegener, Kayu: kimia, ultrastruktur, reaksi-reaksi, H. Sastrohamidjojo, Gadjah Mada University Press, Yogyakarta, 1995,
  30. Suparjo, Degradasi Komponen Lignoselulosa oleh Kapang Pelapuk Putih, 2015
  31. Jufrinaldi Jufrinaldi, Isolasi Selulosa dari Bagas Tebu Melalui Pemanasan Iradiasi Gelombang Mikro, Jurnal Ilmiah Teknik Kimia, 2, 2, (2018), 36-46 http://dx.doi.org/10.32493/jitk.v2i2.1683
  32. Jayanudin Jayanudin, Pemutihan Daun Nanas Menggunakan Hidrogen Peroksida, Jurnal Rekayasa Proses, 3, 1, (2009), 10-14
  33. Desy Nawangsari, Isolasi dan Karakterisasi Selulosa Mikrokristal dari Ampas Tebu (Saccharum officinarum L.), Pharmacon: Jurnal Farmasi Indonesia, 16, 2, (2019), 67-72 https://doi.org/10.23917/pharmacon.v16i2.9150
  34. Long Zhou, Fabio Santomauro, Jiajun Fan, Duncan Macquarrie, James Clark, Christopher J. Chuck, Vitaliy Budarin, Fast microwave-assisted acidolysis: a new biorefinery approach for the zero-waste utilisation of lignocellulosic biomass to produce high quality lignin and fermentable saccharides, Faraday Discussions, 202, (2017), 351-370 https://doi.org/10.1039/C7FD00102A
  35. Liska Triyastiti, Isolasi Nanokristal Selulosa dari Pelepah Pohon Salak sebagai Filler pada Film Berbasis Polivinil Alkohol (PVA), Kimia, UIN Sunan Kalijaga Yogyakarta, Yogyakarta, 2017
  36. Fanrong Meng, Guoqing Wang, Xueyu Du, Zhifen Wang, Shuying Xu, Yucang Zhang, Extraction and characterization of cellulose nanofibers and nanocrystals from liquefied banana pseudo-stem residue, Composites Part B: Engineering, 160, (2019), 341-347 https://doi.org/10.1016/j.compositesb.2018.08.048
  37. Begum Fauziyah, Mohammad Yuwono, Isnaeni Isnaeni, Bagasse nanocellulose (Saccharum officinarum L.): process optimization and characterization, Annals of the Romanian Society for Cell Biology, 25, 2, (2021), 989-1001
  38. Winda Trisna Wulandari, Rosmaya Dewi, Selulosa dari Ampas Tebu Sebagai Adsorben pada Minyak Bekas Penggorengan, KOVALEN: Jurnal Riset Kimia, 4, 3, (2018), 332-339
  39. Harveen C. Bongao, Ryan Russel A. Gabatino, Christlyn Faith H. Arias, Eduardo R. Magdaluyo Jr, Micro/nanocellulose from waste Pili (Canarium ovatum) pulp as a potential anti-ageing ingredient for cosmetic formulations, Materials Today: Proceedings, 22, (2020), 275-280 https://doi.org/10.1016/j.matpr.2019.08.117
  40. I. Risnasari, E. Herawati, S. D. Pandiangan, P. Adelina, Preparation and characterization of nanocrystalline cellulose using ultrasonic assisted autohydrolysis, IOP Conference Series: Earth and Environmental Science, 2019 https://doi.org/10.1088/1755-1315/374/1/012008
  41. Sarifah Fauziah Syed Draman, Rusli Daik, Famiza Abdul Latif, Said M. El-Sheikh, Characterization and thermal decomposition kinetics of kapok (Ceiba pentandra L.)–based cellulose, BioResources, 9, 1, (2014), 8-23
  42. Gusti Umindya Nur Tajalla, Sabrina Humaira, A. W. Y. P. Parmita, Ainun Zulfikar, Pembuatan dan Karakterisasi Selulosa dari Limbah Serbuk Meranti Kuning (Shorea macrobalanos), Jurnal Sains Terapan, 5, 1, (2019), 142-147
  43. Wei Li, Yucang Zhang, Jihui Li, Yijun Zhou, Ruisong Li, Wei Zhou, Characterization of cellulose from banana pseudo-stem by heterogeneous liquefaction, Carbohydrate Polymers, 132, (2015), 513-519 https://doi.org/10.1016/j.carbpol.2015.06.066
  44. Shuchi Singh, S. T. P. Bharadwaja, Pawan Kumar Yadav, Vijayanand S. Moholkar, Arun Goyal, Mechanistic Investigation in Ultrasound-Assisted (Alkaline) Delignification of Parthenium hysterophorus Biomass, Industrial & Engineering Chemistry Research, 53, 37, (2014), 14241-14252 https://doi.org/10.1021/ie502339q
  45. T. G. Fawcett, C. E. Crowder, S. N. Kabekkodu, F. Needham, J. A. Kaduk, T. N. Blanton, V. Petkov, E. Bucher, R. Shpanchenko, Reference materials for the study of polymorphism and crystallinity in cellulosics, Powder Diffraction, 28, 1, (2013), 18-31 https://doi.org/10.1017/S0885715612000930

Last update:

  1. Low-Cost Biosorbents Derived from Corn Husks for the Exclusion of Fe(II) and Cr(VI) Ions Undertaken Aqueous Media: Application for Wastewater Treatment

    Radhika, Lalita Chopra, Kaushik Pal, Abdul Malik, Azmat Ali Khan. Journal of Inorganic and Organometallic Polymers and Materials, 2024. doi: 10.1007/s10904-024-03305-y

Last update: 2024-11-04 16:22:02

No citation recorded.